
Lecture 01: Randomized Algorithm for Reachability Problem

Topics in Pseudorandomness and Complexity (Spring 2018)
Rutgers University
Swastik Kopparty

Scribes: Neelesh Kumar and Justin Semonsen

The lecture is an introduction to randomized algorithms, and builds a motivation for using such
algorithms by taking the example of reachability problem.

1 Deterministic Algorithm vs. Randomized Algorithm

We are given some function f : {0, 1}n → {0, 1}, and we wish to compute f(x) quickly. A de-
terministic algorithm A for computing f is one which always produces the same A(x) = f(x),
∀x ∈ {0, 1}n.
On the other hand, a randomized algorithm A for computing f takes two arguments- the input x
and a random string r such that ∀x ∈ {0, 1}n,

Prr∈{0,1}n [A(x, r) = f(x)] ≥ 0.9 (1)

i.e. with high probability over choices of r, A produces the correct result. It should be noted
that the algorithm A itself may not have inherent randomness, rather it might make random calls
deterministically. It should also be noted that (1) should hold true for all inputs x, and for most
choices of r. Some examples of such algorithms are polynomial identity testing, primality testing
(prior to 2002, the only way to do this was using a randomized algorithm), random sampling, etc.

2 Motivating Example

Let us consider an interesting example to motivate the use of randomized algorithm. We are given
as input a graph G and two of its vertices s and t. We wish to know if there exists a path from s
to t in G.

Approach 1: BFS

A common approach to solve this is using Breadth First Search (BFS). Essentially, starting from s,
we mark all the neighbors of s, i.e. vertices directly reachable from s. We do this recursively until
all the neighbors have been marked. We then check if vertex t is marked or not. The algorithm
uses n bits of space where n is the number of vertices.

A question that arises is can we accomplish this using less space?

1

Approach proposed in class: Exponential Time

An idea that was proposed in the class is to leverage space for time, i.e. reduce the space complexity
by taking exponential time. Basically, the proposed idea is to traverse all possible paths from s
and check if t is in any of them. However to use less than n bits of space, the algorithm must take
less than exponential time by the following logic:

For any given state of memory, the next state is determined from current state. If we use s bits of
space, memory can be in only one of the 2s possible configurations of states of memory. So for an
algorithm with runtime O(2s), one needs s bits of space to specify the current state.

Approach 2: Savitch’s Theorem

This approach uses Savitch’s theorem. The key is to define an intermediate problem and do
recursion on it. We define the recursive intermediate problem as follows:

h(u, v, i) =

{
1, if there is a path from u to v with ≤ 2i steps

0, otherwise

We wish to understand when the above recursion would be equal to 1. Lets pick a path from u to
v. If we encounter a vertex w between u and v such that the length of the path between u and w
and between w and v is less than 2i−1 each, then we can say that h(u, v, i) = 1, otherwise it is 0.
Hence

h(u, v, i) =
∨
w

(h(u,w, i− 1)
∧
h(w, v, i− 1)

We can reformulate our reachability problem as computing h(s, t, log n). Next we analyze the space
and time requirement of this recursion. Let f(i) be the total space needed to compute h(u, v, i).
Then f(i) is equal to the sum of the space required to maintain a counter over space of all w, the
space needed to compute h(u, v, i−1) and some constant space needed to compute AND/OR oper-
ations. Notice that since the expressions h(u,w, i− 1) and h(w, v, i− 1) are computed sequentially,
the space needed to compute one of them can be reused to compute the other. Mathematically:

f(i) ≤ log n+ f(i− 1) + 10

2

On solving the recurrence and substituting for i = log n, we get:

f(log n) ≤ O(log2 n)

which is the space complexity of the algorithm.
Now let t(i) be the time complexity of the algorithm. Using argument similar to that of space
complexity, we can write

t(i) ≤ n(2t(i− 1) + 5)

Unlike space, the calls to (h(u,w, i− 1) and h(w, v, i− 1) will each have their own contribution to
time since they are run sequentially.

t(log n) ≤ nO(logn)

This is a significant improvement in space complexity as compared to BFS. But we would like to do
even better. We would also like to do it in polynomial time. Fortunately, there exists a randomized
algorithm that uses even lesser space and polynomial time.

Approach 3: Randomized algorithm for undirected s− t connectivity

The Random Walk algorithm is remarkably simple and consists of the following steps:

1. Initialize u = s.

2. Pick a random vertex v.

3. If v is adjacent to u, set u = v.

4. If u = t, then return CONNECTED.

5. Else, go to step 2. (Stop after n10 steps).

6. Return NOT CONNECTED.

It should be noted that the above algorithm only works for undirected connectivity, while approach
2 that uses Savitch’s theorem works for both directed and undirected connectivity. The space
requirement for this algorithm is O(log n) and the time requirement is nO(1). With high probability,
the algorithm will return the correct result and the following theorem formalizes this:

Theorem 1. (a) If there is no path from s to t , then Pr[Algo says NOT CONNECTED] =1.

(b) If there is a path from s to t, Pr[Algo says CONNECTED] ≥ 1− 2−O(n)

Theorem 1(a) is trivial. We will now build arguments to prove theorem 1(b). To make the analy-
sis easy, we will slightly modify the random walk algorithm, without affecting its time and space
requirement. The modification is that in step 5, instead of stopping after n10 steps, the algorithm
stops after n5 steps, and the entire process is repeated n5 times.

We are given an n vertex graph with the vertices labeled numerically from 1 through n. Let P ∈ Rn
be a probability distribution on the vertices which implies:

3

1. Pi ≥ 0

2. ΣiPi = 1

Consider the following process:

1. Pick u ∈ [n] according to P.

2. Pick a random neighbor v of u, uniformly from amongst the neighbors of u

3. Output v

The probability that we output a vertex v = v0 can be written as:

Pr[v = v0] =
∑

u adjacent to v0

Pu.
1

deg(u)

where Pu is the probability of picking u according to probability distribution P and 1
deg(u) is the

probability of picking v0 (picked uniformly from neighbors of u). The new probability distribution
can then be written as MP where M is a matrix such that:

Muv =

{
0, if u is not adjacent to v

1
deg(v) , if u is adjacent to v

Then
(MP)u = ΣvMuvPv

(MP)u =
∑

v adjacent to u

1

deg(v)
Pv

We now adapt the above process to our reachability problem. We start at the vertex s. The initial
probability distribution is P = (0 0 0 .. 1 0 0..) where probability is 1 for picking s and 0 for all other
vertices. Every time we take a step, the distribution keeps becoming more and more uniform. After
i steps, the probability distribution is M iP . The matrix M essentially spreads out the distribution.
For large i, P is well distributed and spread over all connected components containing s. All other
components should have zero mass. We will now formally prove this intuition.

Sidenote: Eigenvalues
If M is a symmetric matrix, then M has an orthonormal basis of eigenvectors:

M =

n∑
i=1

λiviv
T
i

where vi are orthonormal basis and Mvi = λivi, λi are real.

We will assume that G is a d-regular graph which means that every vertex has degree d. Con-
sequently, M is symmetric. The analysis can easily be extended to general graphs.
IfG is connected, then we will shortly show thatM iP → 1√

n
v1 where the vector v1 = (1√

n
, 1√
n
, 1√
n
....., 1√

n
)

4

is an eigenvector with eigenvalue λ1 = 1. If G is disconnected, then the same applies for the con-
nected component containing s.
To prove this, we express P as a linear combination of eigenvectors:

P = Σaivi

Also since v′is are orthonormal,
ΣP 2

i = Σa2i = 1

Thus,

a1 =< P, v1 >=
1√
n

Now, for any j, we can write:
M jP = ΣiaiM

jvi

Since vi is an eigenvector,
M jP = Σiaiλ

j
ivi

Separating out the first eigenvector,

= a1λ
j
1v1 +

∑
i≥2

aiλ
j
ivi

Using the fact that λ1 = 1,

= a1v1 +
∑
i≥2

aiλ
j
ivi

For the second part of the above sum, if ∀i ≥ 2, |λi| << 1, i.e. the eigenvalues are noticeably lesser
than 1, then λji will go down very fast, and the sum will disappear. For large j, the above sum
reduces to a1v1 which is equal to 1√

n
v1, and hence approaches uniform distribution amongst all the

vertices in the connected components containing s. The implication of this is that the algorithm
will almost surely see t if there is a path between s and t. We have the following claim:

Claim 2. (a) All λi ∈ [−1, 1]

(b) λ2 = 1 iff G is disconnected.

(c) λn = −1 iff G has a bipartite component.

For proving the claims, we assume that we have a graph G on [n] that is d-regular. Let M be the
normalized adjacency matrix of G. Note that M is symmetric and thus has a basis of eigenvectors.
let the eigenvalues of M be λ1 ≥ λ2 ≥ . . . λn. It is clear that 1√

n
is an eigenvector of M with

eigenvalue 1.

Proof. 1. Assume Mv = λv. Then (Mv)i =
∑

j∼i
(v)j
d = Ej∼i[(v)j] = λ(v)i. Choose i maximiz-

ing |(v)i|. Then |λ| |(v)i| = |Ej∼i[(v)j]| ≤ Ej∼i[|(v)j |] ≤ |(v)i|, so |λ| ≤ 1.

5

2. Let C1 and C2 be disconnected components. Let w1 = 1C1 and w2 = 1C2 be uniform on each
component respectively. Then Mw1 = w1 and Mw2 = w2 with w1⊥w2, so there are multiple
eigenvectors with eigenvalue 1.

Let λ2 = 1, meaning ∃ v⊥ 1√
n

with Mv = v. Let i be such that (v)i is maximum. Then

(v)i = Ej∼i[|(v)j |], so (v)j = (v)i for any j ∼ i. By extension, this means that v is uniform on
the component containing i. If G were connected, then v = (v)i1, but this contradicts that
v⊥ 1√

n
, meaning G is not connected.

3. Let A and B be the partitions of a bipartite component. Let v = 1A − 1B be uniform on A,
negative and uniform on B (with the same value), and 0 elsewhere. Then clearly Mv = −v,
so λn = −1.

If λn = −1, let v be a vector such that Mv = −v. Let i be such that |(v)i| is maximum. Then
(v)i = −Ej∼i[|(v)j |], so −(v)j = (v)i for any j ∼ i. The same logic applies to the neighbors
of these vertices and we can see that this is true for all vertices in the component of i. Let
A = {j : vj = vi} and B = {j : vj = −vi}. Note that this is a bipartite partition of this
component.

3 Lazy Random Walk

Instead of using a random walk, we use a ’lazy’ version to avoid potential issues with G being
bipartite. A lazy random walk is done as follows:

1. Start at s.

2. For k iterations, move to a random neighbor of the current vertex with probability 1
2 , and

otherwise stay at the same vertex.

Note that the state transition matrix for this process is I+M
2 , with the I representing staying in

place, and the denominator accounting for the probability of doing each of the two options. Note
that the eigenvectors of I+M

2 are the same as those of M , but the eigenvalues are 1+λi
2 instead of

each λi. The same properties from above carry over, modifying the numbers accordingly.

This means that
(
I+M
2

)n
p = a1v1 +

∑
i≥2

(
1+λi
2

)n
aivi for vi eigenvectors and ai such that p =∑

i aivi.

4 Lazy Random Walks in s-t Connectivity

We use a similar algorithm as before, doing n5 independent random walks of length n5 from s,
stopping and saying they are connected if we find t on any of these walks. If we never find t we
say it is not connected to s. Note that this algorithm will always be right in this second case, so
we only need analyze the case where s is connected to t, but we don’t find it. In this case p is the
vector with a 1 at s and zeros elsewhere. This also means a1 = 1√

n
.

6

In this case, we only consider the graph to be the component of that contains S, as the rest doesn’t
apply. We then can prove the following lemma:

Lemma 3. λ2 ≤ 1− 1
dn3

Using this lemma and that d ≤ n, we have:∣∣∣∣∣
(
I +M

2

)k
p− a1v1

∣∣∣∣∣
2

≤
∑
i≥2

a2i

(
1 + λi

2

)2k

≤

(∑
i

a2i

)
)

(
1− 1

2dn3

)2k

< e
−k

n4

Because we do k = n5 length paths, we know that ∀ i,
((

I+M
2

)k
p
)
i
∈
(
1
n − e

−n, 1
n + e−n

)
.

This means that if s is in the same component as t (and e−n ≤ 1
2n), Pr[path doesn’t end on t] <

1 − 1
2n . This means that the probability none of the paths end on t (not even including passing

through!) is less than
(
1− 1

2n

)n5

< e
n4

2 , so this algorithm rarely fails.

All that remains is a proof of the Lemma:

Proof. Note that 〈v, (I −M)v〉 =
∑

i(v)2i −
∑

i

∑
j∼i(v)i(v)j/d = 1

2

∑
i Ej∼i[((v)i − (v)j)

2]. This

means that 1
n〈v, (I −M)v〉 = 1

2EiEj∼i[((v)i − (v)j)
2].

This means that if v⊥ 1√
n

and |v| = 1, we know that
∑

i(v)2i = 1 and
∑

i(v)i = 0. The first equality

means that ∃ i such that |(v)i| ≥ 1√
n

. If (v)i < 0, we can negate the vector v, and thus we may

assume (v)i ≥ 1√
n

.

Because
∑

i(v)i = 0,∃ j such that (v)j < 0. Because i and j are connected, there is a path of length
at most n between them. Therefore there must be some r, s on this path such that (v)r−(v)s ≥ 1√

n
3 .

Just using this term, EiEj∼i[((v)i − (v)j)
2] ≥ 2

dn4 , so 〈v, (I −M)v〉 ≥ 1
dn3 . If v is the eigenvector

corresponding to λ2, this means 1− λ2 ≥ 1
dn3 .

7

