Problems

Topics in Pseudorandomness and Complexity (Spring 2018) Rutgers University Swastik Kopparty

Do any two problems. Due April 26, 2018, in class.

1. Let G be an undirected graph. Let A be the adjacency matrix of G. Let D be the diagonal matrix whose (i, i) entry equals the degree of the *i*th vertex. Recall that $M = AD^{-1}$ is the random walk matrix of G.

Show that the probability distribution p^* which picks a vertex with probability proportional to its degree is stable under M.

If A is nonbipartite and connected, show that the distribution of the tth step of the simple random walk (starting at an arbitrary vertex) on G converges to p^* as $t \to \infty$.

How large a t makes the above distribution to ϵ -close in statistical distance to p^* ?

Hint: Define $P = D^{-1/2}AD^{-1/2}$. Note that P is symmetric, and thus has a basis of orthonormal eigenvectors. Express M^t in terms of P^t . Show that the top eigenvalue of P is 1. When is there another eigenvalue with absolute value 1?

- 2. Below is a collection of facts/problems related to finite fields. Try to verify them yourself or look them up.
 - (a) Let p be prime. Let $\mathbb{F}_p = \{0, 1, \dots, p-1\}$ along with operations addition and multiplication mod p. Every integer can be treated as an element of \mathbb{F}_p (by taking the remainder after dividing by p).

All of \mathbb{F}_p forms a group under addition. The nonzero elements of \mathbb{F}_p , denoted \mathbb{F}_p^* form a group under multiplication. Both groups are commutative.

- (b) For each $a \in \mathbb{F}_p$, we have $a^p = a$. If $a \neq 0$, then $a^{p-1} = 1$.
- (c) Let $\mathbb{F}_p[X]$ be the set of polynomials with \mathbb{F}_p coefficients. Then the division theorem holds in $\mathbb{F}_p[X]$, and thus every element of $\mathbb{F}_p[X]$ can be uniquely factorized into irreducible polynomials.
- (d) The remainder theorem holds in $\mathbb{F}_p[X]$. Thus $X^p X = \prod_{\alpha \in \mathbb{F}_p} (X \alpha)$.
- (e) For each integer d, the number of a ∈ F^{*}_p satisfying a^d = 1 is at most d. Combining this with the fact that F^{*}_p is commutative, this implies that F^{*}_p is cyclic (i.e., there is an element g ∈ F^{*}_p such that F^{*}_p = {1, g, g², ..., g^{p-2}}. Not every element of F^{*}_p generates F^{*}_p. Look at the cases p = 7,13 and find a generator for F^{*}_p in each case.
- (f) Suppose p is an odd prime. Then exactly 1/2 the elements of \mathbb{F}_p^* are perfect squares. If $a \in \mathbb{F}_p^*$, then $a^{(p-1)/2}$ equals either 1 or -1, depending on whether a is a perfect square or not.
- (g) Generalize the above to perfect dth powers. Note that if d is relatively prime to p-1 then every element of \mathbb{F}_p^* is a perfect dth power.

(h) Let f(X) be an irreducible polynomial of degree d in $\mathbb{F}_p[X]$. We can consider the set $\mathbb{F}_p[X]/f(X)$ of polynomials modulo f(X). Every polynomial is equivalent modulo f(X) to a unique polynomial of degree < d. Thus there are p^d residue classes. Addition and multiplication of polynomials is compatible with reducing mod f(X). Every nonzero element of $\mathbb{F}_p[X]/f(X)$ has a multiplicative inverse (this is where irreducibility of f(X) is used). Thus $\mathbb{F}_p[X]/f(X)$ is a field of cardinality p^d . The relationship between \mathbb{Z} , the prime p and the field \mathbb{Z}/p is entirely analogous to the

relationship between $\mathbb{F}_p[X]$, the irreducible f(X) and the field $\mathbb{F}_p[X]/f(X)$.

- (i) The field $\mathbb{F}_p[X]/f(X)$ is a *d*-dimensional vector space over the field \mathbb{F}_p . We denote this field \mathbb{F}_{p^d} . It is tricky to prove but true that any two fields of cardinality p^d are isomorphic fields. Thus there is a unique such field. If *n* is an integer not of the form p^d for *p* prime, then there does not exist a finite field of cardinality *n*. Thus whenever we talk of the finite field \mathbb{F}_q , we will insist that *q* be a prime power.
- (j) Note that the above construction of \mathbb{F}_{p^d} required the existence of an irreducible polynomial of degree d over \mathbb{F}_p . Such polynomials exist for every d! Try to show this.
- (k) Construct the fields \mathbb{F}_8 and \mathbb{F}_9 .
- (1) Note that the field \mathbb{F}_{p^d} is not isomorphic to the ring \mathbb{Z}/p^d .
- (m) Many of the facts you proved about the field \mathbb{F}_p also hold for \mathbb{F}_{p^d} . Polynomials over \mathbb{F}_{p^d} can be defined, and they have nice properties. The multiplicative group $\mathbb{F}_{p^d} \setminus \{0\}$ is cyclic. Etc. To prove all these properties, you need not use the explicit construction of \mathbb{F}_{p^d} described above. It suffices to just use the fact that \mathbb{F}_{p^d} is a field of cardinality p^d .

(n)
$$X^{p^d} - X = \prod_{\alpha \in \mathbb{F}_{p^d}} (X - \alpha).$$

3. Let q be a prime power. For each $\alpha \in \mathbb{F}_q$, let $v_\alpha \in \mathbb{F}_q^k$ be the vector $(1, \alpha, \alpha^2, \dots, \alpha^{k-1})$.

- (a) Show that for any k distinct $\alpha_1, \ldots, \alpha_k \in \mathbb{F}_q$, the vectors $v_{\alpha_1}, v_{\alpha_2}, \ldots, v_{\alpha_k}$ are linearly independent.
- (b) Now suppose $q = 2^t$. Using the fact that \mathbb{F}_q a vector space of dimension t over \mathbb{F}_2 , we get a \mathbb{F}_2 -linear isomorphism $E : \mathbb{F}_q^k \to \mathbb{F}_2^{tk}$. Show that the vectors $\tilde{v}_{\alpha} = E(v_{\alpha}) \in \mathbb{F}_2^{tk}$ are such that any k of them are linearly independent over \mathbb{F}_2 .

Let $n = 2^t$. Show that the k-wise independent distribution over \mathbb{F}_2^n that we get from these vectors has seed length $k \log n$.

(c) Again suppose $q = 2^t$, and let k be even. Let $u_{\alpha} \in \mathbb{F}_q^{k/2}$ be the vector $(\alpha, \alpha^3, \alpha^5 \dots, \alpha^{k-1})$. Let $\tilde{u}_{\alpha} = E(u_{\alpha}) \in \mathbb{F}_2^{tk/2}$. Show that if $\alpha_1, \dots, \alpha_k$ are such that $\tilde{u}_{\alpha_1}, \dots, \tilde{u}_{\alpha_k}$ are linearly dependent over \mathbb{F}_2 . Thus conclude that every set of k vectors from the collection $\{\tilde{u}_{\alpha} \mid \alpha \in \mathbb{F}_q\}$ are linearly independent over \mathbb{F}_2 . Let $n = 2^t$. Show that the k-wise independent distribution over \mathbb{F}_2^n that we get from these vectors has seed length $\frac{k}{2} \log n$.

This construction is also known as the "BCH code", after R. C. Bose, D. Ray-Chaudhuri and Hocquenghem.

(d) Let k be a constant. Suppose $s < \frac{k}{2} \log n - \Omega(1)$. Show that if we take any collection of n vectors in \mathbb{F}_2^s , then some k of them are linearly dependent.

Thus the above construction of vectors is essentially as large as possible.

- 4. In this exercise we will prove a lower bound on the seed length required for generating k-wise independent random bits.
 - (a) Show that a distribution μ over \mathbb{F}_2^n is k-wise independent if and only if $\hat{\mu}(S) = 0$ for all $S \subseteq [n]$ with $1 \leq |S| \leq k$.
 - (b) Let k be a constant. Let $X \subseteq \mathbb{F}_2^n$ with $|X| = o(n^{\lfloor k/2 \rfloor})$. Show that for $d = \lfloor k/2 \rfloor$, there is a function $f : \mathbb{F}_2^n \to \mathbb{R}$ which satisfies:
 - i. f is not identically 0.
 - ii. $\hat{f}(S) = 0$ for each |S| > d.
 - iii. f(x) = 0 for each $x \in X$.

Use this to show that any k-wise independent distribution over \mathbb{F}_2^n has support at least $\Omega(n^{k/2})$. Thus the BCH construction of a k-wise independent distribution has essentially optimal seed length.

5. Suppose $X, Y \in \{0, 1\}^n$ are *independent* random variables with $H_{\infty}(X), H_{\infty}(Y) \ge 0.51n$.

Let Z be the random variable $\langle X, Y \rangle \in \{0, 1\}$ (where the inner product is over \mathbb{F}_2).

Show that Z is $2^{-\Omega(n)}$ -close to a uniformly distributed bit.

This is an example of a "two-source extractor": it extracts nearly pure randomness from two independent weak sources of randomness.

Hint: Let f, g be the probability distributions of X, Y respectively. Consider the Fourier transforms of f, g, and express the output distribution in terms of that.

- 6. Show that there do not exist (k, ϵ) -extractors $E : \{0, 1\}^n \times \{0, 1\}^d \to \{0, 1\}^m$ for k = n/2, $\epsilon = 0.01, d < \log n + \log \frac{1}{\epsilon}$ and $m \ge 1$.
- 7. A bit-fixing source of weak randomness is a $\{0,1\}^n$ -valued random variable X for which there exists a subset $S \subseteq [n]$ of coordinates for which: $X|_S$ is uniformly distributed, and $X|_{[n]\setminus S}$ is constant. Note that |S| is the min-entropy of such a bit-fixing source.
 - (a) Show that there exist deterministic extractors for bit-fixing sources. Concretely, show that for every $k \gg \log n$, $m < k 2\log(1/\epsilon) O(1)$, there exists a function $E : \{0, 1\}^n \to \{0, 1\}^m$ such that for every bit-fixing source X with $H_{\infty}(X) \ge k$, we have E(X) is ϵ -close to U_m . Such an E is called a (k, ϵ) bit-fixing extractor.
 - (b) Show that if $m = k^{0.49}$, the map $E : \{0, 1\}^n \to \{0, 1, \dots, m-1\}$ given by:

$$E(x) = x \mod m$$

is a (k, o(1)) bit-fixing extractor. Here the *n*-bit string x is viewed as an integer in base 2, and x mod m is the remainder when the integer x is divided by m.