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Do any two problems. Due April 26, 2018, in class.

1. Let G be an undirected graph. Let A be the adjacency matrix of G. Let D be the diagonal
matrix whose (i, i) entry equals the degree of the ith vertex. Recall that M = AD−1 is the
random walk matrix of G.

Show that the probability distribution p∗ which picks a vertex with probability proportional
to its degree is stable under M .

If A is nonbipartite and connected, show that the distribution of the tth step of the simple
random walk (starting at an arbitrary vertex) on G converges to p∗ as t→∞.

How large a t makes the above distribution to ε-close in statistical distance to p∗?

Hint: Define P = D−1/2AD−1/2. Note that P is symmetric, and thus has a basis of orthonor-
mal eigenvectors. Express M t in terms of P t. Show that the top eigenvalue of P is 1. When
is there another eigenvalue with absolute value 1?

2. Below is a collection of facts/problems related to finite fields. Try to verify them yourself or
look them up.

(a) Let p be prime. Let Fp = {0, 1, . . . , p−1} along with operations addition and multiplica-
tion mod p. Every integer can be treated as an element of Fp (by taking the remainder
after dividing by p).

All of Fp forms a group under addition. The nonzero elements of Fp, denoted F∗p form a
group under multiplication. Both groups are commutative.

(b) For each a ∈ Fp, we have ap = a. If a 6= 0, then ap−1 = 1.

(c) Let Fp[X] be the set of polynomials with Fp coefficients. Then the division theorem holds
in Fp[X], and thus every element of Fp[X] can be uniquely factorized into irreducible
polynomials.

(d) The remainder theorem holds in Fp[X]. Thus Xp −X =
∏
α∈Fp

(X − α).

(e) For each integer d, the number of a ∈ F∗p satisfying ad = 1 is at most d. Combining
this with the fact that F∗p is commutative, this implies that F∗p is cyclic (i.e., there is an
element g ∈ F∗p such that F∗p = {1, g, g2, . . . , gp−2}.
Not every element of F∗p generates F∗p. Look at the cases p = 7, 13 and find a generator
for F∗p in each case.

(f) Suppose p is an odd prime. Then exactly 1/2 the elements of F∗p are perfect squares. If

a ∈ F∗p, then a(p−1)/2 equals either 1 or −1, depending on whether a is a perfect square
or not.

(g) Generalize the above to perfect dth powers. Note that if d is relatively prime to p − 1
then every element of F∗p is a perfect dth power.
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(h) Let f(X) be an irreducible polynomial of degree d in Fp[X]. We can consider the set
Fp[X]/f(X) of polynomials modulo f(X). Every polynomial is equivalent modulo f(X)
to a unique polynomial of degree < d. Thus there are pd residue classes. Addition and
multiplication of polynomials is compatible with reducing mod f(X). Every nonzero
element of Fp[X]/f(X) has a multiplicative inverse (this is where irreducibility of f(X)
is used). Thus Fp[X]/f(X) is a field of cardinality pd.

The relationship between Z, the prime p and the field Z/p is entirely analogous to the
relationship between Fp[X], the irreducible f(X) and the field Fp[X]/f(X).

(i) The field Fp[X]/f(X) is a d-dimensional vector space over the field Fp. We denote this
field Fpd . It is tricky to prove but true that any two fields of cardinality pd are isomorphic

fields. Thus there is a unique such field. If n is an integer not of the form pd for p prime,
then there does not exist a finite field of cardinality n. Thus whenever we talk of the
finite field Fq, we will insist that q be a prime power.

(j) Note that the above construction of Fpd required the existence of an irreducible polyno-
mial of degree d over Fp. Such polynomials exist for every d! Try to show this.

(k) Construct the fields F8 and F9.

(l) Note that the field Fpd is not isomorphic to the ring Z/pd.
(m) Many of the facts you proved about the field Fp also hold for Fpd . Polynomials over

Fpd can be defined, and they have nice properties. The multiplicative group Fpd \ {0} is
cyclic. Etc. To prove all these properties, you need not use the explicit construction of
Fpd described above. It suffices to just use the fact that Fpd is a field of cardinality pd.

(n) Xpd −X =
∏
α∈F

pd
(X − α).

3. Let q be a prime power. For each α ∈ Fq, let vα ∈ Fkq be the vector (1, α, α2, . . . , αk−1).

(a) Show that for any k distinct α1, . . . , αk ∈ Fq, the vectors vα1 , vα2 , . . . , vαk
are linearly

independent.

(b) Now suppose q = 2t. Using the fact that Fq a vector space of dimension t over F2, we
get a F2-linear isomorphism E : Fkq → Ftk2 . Show that the vectors ṽα = E(vα) ∈ Ftk2 are
such that any k of them are linearly independent over F2.

Let n = 2t. Show that the k-wise independent distribution over Fn2 that we get from
these vectors has seed length k log n.

(c) Again suppose q = 2t, and let k be even. Let uα ∈ Fk/2q be the vector (α, α3, α5 . . . , αk−1).

Let ũα = E(uα) ∈ Ftk/22 . Show that if α1, . . . , αk are such that ũα1 , . . . , ũαk
are linearly

dependent over F2, then ṽα1 , . . . , ṽαk
are linearly dependent over F2. Thus conclude that

every set of k vectors from the collection {ũα | α ∈ Fq} are linearly independent over F2.

Let n = 2t. Show that the k-wise independent distribution over Fn2 that we get from
these vectors has seed length k

2 log n.

This construction is also known as the “BCH code”, after R. C. Bose, D. Ray-Chaudhuri
and Hocquenghem.

(d) Let k be a constant. Suppose s < k
2 log n−Ω(1). Show that if we take any collection of

n vectors in Fs2, then some k of them are linearly dependent.

Thus the above construction of vectors is essentially as large as possible.
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4. In this exercise we will prove a lower bound on the seed length required for generating k-wise
independent random bits.

(a) Show that a distribution µ over Fn2 is k-wise independent if and only if µ̂(S) = 0 for all
S ⊆ [n] with 1 ≤ |S| ≤ k.

(b) Let k be a constant. Let X ⊆ Fn2 with |X| = o(nbk/2c). Show that for d = bk/2c, there
is a function f : Fn2 → R which satisfies:

i. f is not identically 0.

ii. f̂(S) = 0 for each |S| > d.

iii. f(x) = 0 for each x ∈ X.

Use this to show that any k-wise independent distribution over Fn2 has support at least
Ω(nk/2). Thus the BCH construction of a k-wise independent distribution has essentially
optimal seed length.

5. Suppose X,Y ∈ {0, 1}n are independent random variables with H∞(X), H∞(Y ) ≥ 0.51n.

Let Z be the random variable 〈X,Y 〉 ∈ {0, 1} (where the inner product is over F2).

Show that Z is 2−Ω(n)-close to a uniformly distributed bit.

This is an example of a “two-source extractor”: it extracts nearly pure randomness from two
independent weak sources of randomness.

Hint: Let f, g be the probability distributions of X,Y respectively. Consider the Fourier
transforms of f, g, and express the output distribution in terms of that.

6. Show that there do not exist (k, ε)-extractors E : {0, 1}n × {0, 1}d → {0, 1}m for k = n/2,
ε = 0.01, d < log n+ log 1

ε and m ≥ 1.

7. A bit-fixing source of weak randomness is a {0, 1}n-valued random variable X for which there
exists a subset S ⊆ [n] of coordinates for which: X|S is uniformly distributed, and X|[n]\S is
constant. Note that |S| is the min-entropy of such a bit-fixing source.

(a) Show that there exist deterministic extractors for bit-fixing sources. Concretely, show
that for every k � log n, m < k−2 log(1/ε)−O(1), there exists a function E : {0, 1}n →
{0, 1}m such that for every bit-fixing source X with H∞(X) ≥ k, we have E(X) is ε-close
to Um. Such an E is called a (k, ε) bit-fixing extractor.

(b) Show that if m = k0.49, the map E : {0, 1}n → {0, 1, . . . ,m− 1} given by:

E(x) = x mod m

is a (k, o(1)) bit-fixing extractor. Here the n-bit string x is viewed as an integer in base
2, and x mod m is the remainder when the integer x is divided by m.
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