Suggested problems on inequalities

- 1. Prove that for any real number $x \ge -1$, and any positive integer $n (1+x)^n \ge 1 + nx$.
- 2. Prove that $n! \ge (n/e)^n$ and that $n! \le ((n+1)/e)^{n+1}$.
- 3. Suppose that a_1, a_2, \ldots is a sequence of positive real numbers such that $\sum_{n=1}^{\infty} a_n$ converges. Prove that for any p > 1/2, $\sum_{n > \infty} \sqrt{a_n}/n^p$ also converges.
- 4. Let a_1, a_2, \ldots, a_n be positive real numbers and let s denote their sum. Show that $(1+a_1)(1+a_2)\ldots(1+a_n) \leq \sum_{i=0}^n s^i/i!$.
- 5. Let p_1, \ldots, p_n be distinct points in the closed unit disc in the plane. Let d_k be the distance from p_k to the nearest other point. Show that $\sum_{k=1}^n (d_k)^2 \leq 16$.
- 6. For n positive real numbers with minimum m and maximum M, let A and G denote their arithmetic and geometric means. Prove that $A G \leq (\sqrt{M} \sqrt{m})^2/n$.
- 7. Let x_1, \ldots, x_n be positive real numbers and k a positive integer. Prove $\frac{1}{n} \sum_i x_i^k \leq \frac{\sum_i x_i^{k+1}}{\sum_i x_i}$
- 8. Let $a_1, \ldots, a_n, b_1, \ldots, b_n$ be nonnegative real numbers. Show $(a_1 \cdots a_n)^{1/n} + (b_1 \cdots b_n)^{1/n} \leq [(a_1 + b_1) \cdots (a_n + b_n)]^{1/n}$.
- 9. Let x_1, \ldots, x_n be real numbers in $[0, \pi]$ Let x be their average. Prove that: $\prod_{i=1}^n \sin(x_i)/x_i \leq (\sin(x)/x)^n.$