Trees

Graph Theory (Fall 2011) Rutgers University Swastik Kopparty

1 Some basic definitions

Let G = (V, E) be a graph.

Definition 1 (Degree). The degree of a vertex $v \in V$, denoted d(v), is the number of $e \in E$ that are incident on v.

Lemma 2.

$$\sum_{v \in V} d(v) = 2|E|.$$

Proof. Count the number of $(v, e) \in V \times E$ such that e is incident on v.

Definition 3 (Walk). A walk in G is a sequence of vertices v_0, \ldots, v_k of G such that for each i, $\{v_i, v_{i+1}\}$ is an edge of G. k is called the length of the walk. This walk is said to be "from v_0 to v_k ".

Definition 4 (Path). A path in G is a walk v_0, \ldots, v_k such that $v_i \neq v_j$ for all $i \neq j$.

Definition 5 (Cycle). A cycle in G is a walk v_0, \ldots, v_k such that $k \geq 3$, $v_0 = v_k$, and for all $i \neq j$ with $\{i, j\} \neq \{0, k\}$, we have $v_i \neq v_j$.

A cycle in G of length k is called a k-cycle of G. Note the condition $k \geq 3$; there is no such thing as a cycle of length 2.

Definition 6 (Acyclic Graph). A graph is called acyclic if there are no cycles in G.

Definition 7 (Connected). G is connected if for every $u, v \in V$, there is a path in G from u to v.

Definition 8 (Subgraph and Induced Subgraph). A graph G' = (V', E') is called a subgraph of G = (V, E) if $V' \subseteq V$ and $E' \subseteq E \cap \binom{V'}{2}$.

In case $E' = E \cap {V' \choose 2}$, then G' is called the **induced subgraph** on V' of G, denoted G[V'] or $G|_{V'}$.

The subgraph relation forms a partial order on all graphs. Under this partial order, we may speak of a maximal element of a collection of graphs. This enables the following definition.

Definition 9 (Connected Component). A connected component of G is a maximal connected subgraph of G.

2 Trees

Definition 10 (Tree). A tree is a connected, acyclic graph.

Theorem 11. Let G = (V, E) be a tree with |V| = n. Then |E| = n - 1.

Proof. By induction on n. The theorem is trivial for n = 1.

Pick any vertex $u \in V$. Let e_1, e_2, \ldots, e_k be the neighbors of u in G. For $i \in [k]$, let V_i be the set of vertices $v \in V$ such that there is a path from u to v passing through edge e_i .

Observe that the V_i are pairwise disjoint; otherwise if $v \in V_i \cap S_j$, we could use the two paths from u to v (one via e_i and another via e_j) to construct a cycle in G (Make sure you can see this argument through!).

Observe also that $G|_{V_i}$ is a tree.

Let $n_i = |V_i|$ and let $m_i = |E \cap \binom{V_i}{2}|$ be the number of edges in $G|_{V_i}$. By the induction hypothesis, we have $m_i = n_i - 1$.

Then $V = \bigcup V_i \cup \{u\} = V$, and so $\sum n_i = n - 1$.

Also,
$$E = \bigcup \left(E \cap \binom{V_i}{2}\right) \cup \{e_1, \dots, e_k\}$$
, and so $|E| = \sum m_i + k = \sum (n_i - 1) + k = \sum n_i = n - 1$. \square

Now two quick corollaries, showing how delicately balanced the properties of connectedness and acyclicity are with respect to the number of edges in a tree.

Lemma 12. Let G be a graph with n vertices and m edges. If m > n - 1, then G has a cycle.

Proof. Suppose not. Let G_1, G_2, \ldots, G_k be the connected components of G. Let n_i be the number of vertices of G_i , and let m_i be the number of edges of G_i . We have $\sum n_i = n$ and $\sum m_i = m \ge n$. Thus there must be some i such that $m_i \ge n_i$. This G_i is a connected graph, and since $m_i > n_i - 1$, it cannot be a tree (By Theorem 11).

Lemma 13. Let G be a graph with n vertices and m edges. If m < n - 1, then G is disconnected.

Proof. Suppose G was connected.

Suppose G contains a cycle C. Pick any edge e of C and remove it from the graph G. Then G is still connected (because any path in the original G that uses e can be modified to use other edges of C and avoid e). We may keep doing this as long as G has a cycle. We end up with G being acyclic and connected, and thus a tree.

Now by Theorem 11, this resulting graph must have n-1 edges. But since we started with m < n-1 edges, and our operations only deleted edges, this is a contradiction.

Using Theorem 11, we can also calculate the average degree of vertices in a tree. Let G be a tree with |V|=n. Then the average degree of G is given by: $\frac{1}{n}\sum_{v\in V}d(v)=\frac{1}{n}\cdot(2|E|)=2\left(1-\frac{1}{n}\right)$.

3 Spanning Trees

Definition 14 (Spanning Tree). Let G be a graph. A spanning tree of G is a subgraph T = (V, E') (T has the same vertex set as G) which is a tree.

Lemma 15. Every connected graph G has a spanning tree.

Proof. Take a minimal connected subgraph of G on the same vertex set as G. Observe that this subgraph is acyclic, and is thus a spanning tree of G.

Alternatively, take a maximal acyclic subgraph of G. Observe that this graph is connected, and is thus a spanning tree of G.

This motivates a simple algorithm to find a spanning tree of a graph.

Algorithm to find a Spanning Tree of G = (V, E)

- 1. Start with $E' = \emptyset$.
- 2. While (V, E') is not connected:
 - Let $e \in E$ be any edge such that $(V, E' \cup \{e\})$ is acyclic. If such an e does not exist, then FAIL (G is disconnected, and thus does not have a spanning tree).
 - Set $E' := E' \cup \{e\}$.
- 3. T = (V, E') is the desired spanning tree of G.

One could also design an algorithm which starts from E and keeps deleting edges, maintaining the property that the graph is connected. When this algorithm cannot proceed, what remains is a spanning tree of G.