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Welcome to the course on finite fields! This is aimed at graduate students in mathematics and theoretical
computer science1. We will see a number of important classical and modern themes in the study of finite
fields.

1 Course Info

• Instructor: Swastik Kopparty (swastik.kopparty@rutgers.edu, swastik.kopparty@gmail.com).

• Meeting times: Monday, Wednesday: 5:00 - 6:20.

• NOTE: Some classes will be cancelled, but we make up for this by extending the usual time of 5:00 -
6:20 to 5:00 - 8:00 on some Mondays. More info on this as the semester proceeds.

• Recommended texts: Finite Fields (Lidl and Niederrieter), Equations over Finite Fields (Schmidt),
Additive Combinatorics (Tao and Vu).

• Problem sets: There will be problem sets and problems scattered through the lecture notes. Each
problem will be worth some number of points (between 1 (easy) and 10 (open problem)). You should
turn in 20 points.

2 Finite field basics

We will start by reviewing some of the basics of field theory, and then get a complete classification of all
finite fields.
Recall that a field is a set F equipped with two operations, addition (+) and multiplication (·), and two
special elements 0, 1, satisfying:

• (F,+) is an abelian group with identity element 0.

• (F∗, ·) is an abelian group with identity element 1 (here F∗ denotes F \ {0}).

• For all a ∈ F, 0 · a = a · 0 = 0.

• Distributivity: for all a, b, c ∈ F, we have a · (b+ c) = a · b+ a · c.

A finite field is a field which is, well, finite.
Recall the notion of a vector space over a field. Note that an n-dimensional vector space over a finite field
of cardinality q has cardinality qn (and in particular, is finite).

1Students from the Department of Agriculture should see me after class. There might have been a misunderstanding.
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2.1 Fp

The simplest example of a finite field is as follows. Take a prime p ∈ Z. Let Fp = Z/pZ (the quotient of
the ring Z mod the ideal pZ). Very explicitly, Fp = {0, 1, . . . , p − 1}, and the operations are addition and
multiplication of integers mod p.
To see that this is a field, the main step is to verify that every a ∈ F∗p has a multiplicative inverse. Since
a ∈ F∗p and p is prime, we have that GCD(a, p) = 1, and so by Euclid, we know that there exist integers x, y
s.t. ax+ py = 1. Then x mod p is a−1.

2.2 The prime subfield

Let F be a finite field. For a positive integer r, consider the r-fold sum sr = 1 + 1 + . . .+ 1. Since F is finite,
some sr must equal 0. Let p be the smallest positive p for which sp equals 0. Observe that if p exists, it
must be prime; for if p = a · b with a, b < p, then by distributivity we have 0 = sp = sa · sb, and so one of
sa, sb must equal 0, contradicting the minimality of p. This p is called the characteristic of the field F.
Now observe that the subset {0, s1, s2, . . . , sp−1} ⊆ F is itself a field, isomorphic to Fp. This is called the
prime subfield of F.
The key to the full classification of all finite fields is the observation that F is a finite dimensional vector
space over Fp. Let n = dimFp

(F). Then we have |F| = pn. In particular, the cardinality of a finite field must
be a prime power.

2.3 F[X]

Let F be a field. Consider F[X], the ring of 1-variable polynomials over F. Because of the division algorithm
F[X], we have:

• F[X] is a principal ideal domain: every ideal in F[X] is generated by a single g(X) ∈ F[X].

• F[X] is a unique factorization domain.

• The remainder theorem: P (X) ∈ F[X] vanishes at a point α ∈ F if and only if (X − α) divides P (X).

These facts give us the following fundamental theorem.

Theorem 1. If P (X) ∈ F[X] is a nonzero polynomial of degree ≤ d, then P (X) has ≤ d roots in F.

We will also be using derivatives of polynomials. Define the derivative map D : F[X] → F[X] by D(Xi) =
i ·Xi−1, and extend it by F-linearity. We then have the product rule:

D(f · g) = f ·D(g) +D(f) · g.

Sometimes we will denote D(f(X)) by f ′(X).
Some important remarks:

• Even though derivatives do not have a geometric interpretation as in the R case, they are very useful
for us because they can be used to detect double roots of polynomials: (X − α)2 divides P (X) if and
only if P (α) = 0 and P ′(α) = 0. This follows from the product rule (prove it).

• For detecting triple and higher roots of polynomials (which we will be interested in later), it turns out
that the higher order derivatives Di do NOT do the job. This is related to the fact that derivatives
can end up being zero too easily: in characteristic 2, for example, D2(f(X)) = 0 for all f(X).

• This issue will be solved by the Hasse derivatives, coming soon.
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2.4 Algebraic extensions

Let F be a field and let K be a subfield. Note that F is a vector space over K. We denote dimK(F) by [F : K].
Suppose [F : K] = n. Now pick any α ∈ F. Consider the elements 1, α, α2, . . . , αn. Since F is n-dimensional
over K, these n + 1 elements must be linearly dependent over K. Thus α is the root of some nonzero
P (X) ∈ K[X]. Thus every α ∈ F is algebraic over K.

Theorem 2. Every finite field F of characteristic p is a finite algebraic extension field of Fp.

Conversely, every finite algebraic extension field of Fp is a finite field. This gives us a characterization of all
finite fields.

2.5 Constructing algebraic extensions

Let F be a field and let K be a subfield with [F : K] finite.
Now consider an element α ∈ F. Let M(X) ∈ K[X] be a nonzero monic polynomial of smallest degree for
which M(α) = 0. Note that M(X) must be irreducible in K[X]. Also note that if P (X) ∈ K[X] is such
that P (α) = 0, then M(X) | P (X) (this follows from the division algorithm). In particular, M(X) is the
unique nonzero monic polynomial of smallest degree for which M(α) = 0. This M(X) is called the minimal
polynomial of α over K.
Define K(α) to be the smallest subfield of F containing both K and α. Observe that if d = deg(M(X)), then

K(α) = spanK{1, α, α2, . . . , αd−1}.

This equality holds between the two subsets of F; in particular it assumes that we already have our hands
on F, and describes K(α) in terms of the operations of F.
The key to getting a “construction” of F using only operations from K is the following field isomorphism:

K(α) ≡ K[X]/〈M(X)〉.

(This is the ring K[X] mod the ideal generated by M(X)). The right hand side is defined only in terms of
K, and is called a primitive field extension. If d = deg(M(X)), then it is a degree d extension of K.
This gives us the following construction of F from K. Set K0 = K. Pick α1 ∈ F \K0, and set K1 = K0(α1).
If K1 = F, then we are done. Otherwise, pick α2 ∈ F \ K1, set K2 = K1(α2), etc. At each stage, [F : Ki]
reduces, and thus the process must stop. This gives us a construction of F as a finite sequence of primitive
extensions of K. It can be completely specified by the sequence of irreducible polynomials Mi(X) ∈ Ki[X],
where Mi(X) is the minimal polynomial of αi+1 over Ki.
We will eventually make this even more explicit: we will see that every finite field is a primitive extension
of Fp.

2.6 Existence of a finite field of cardinality pn

We will first find some properties that any finite field of size pn must have, and then let that guide our
search.
Let F be a finite field of cardinality q = pn.
Since the multiplicative group of F∗ has cardinality q − 1, we have that αq−1 = 1 for every α ∈ F∗. Thus
αq = α for every α ∈ F.
Let us rephrase this. Consider the polynomial P (X) = Xq −X. All q elements of F are roots of this degree
q polynomial. Thus P (X) =

∏
α∈F(X − α).

This motivates a construction of F. First, a lemma.

Lemma 3. Let K be a field. Let P (X) ∈ K[X]. Then there exists a field L ⊇ K, with [L : K] finite, such
that P (X) factors into linear factors over L[X].
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This lemma is proved by iterating the following observation. Let M(X) ∈ K[X] be an irreducible polynomial.
Then if we consider the extension field K1 = K[T ]/〈M(T )〉 and let α denote the element corresponding to T
in K1, we have that (X − α) |M(X) in K1[X].
Now let q = pn with p prime. Set K = Fp and P (X) = Xq − X ∈ K[X]. The lemma tells us that there
exists a finite field L in which Xq −X factors as a product of linear factors:

q∏
i=1

(X − αi),

where each αi ∈ L.
We first observe that all the αi are distinct. Consider any i ∈ [q]. If we set Q(X) = P (X)

X−αi
, then we have the

identity (using the product rule for derivatives):

Q(αi) = P ′(αi) = −1.

Thus Q(X) is not divisible by (X −αi), or equivalently, P (X) is not divisible by (X −αi)2. Thus all the αi
are distinct.
Set F = {α ∈ L | P (α) = 0} = {αi | i ∈ [q]}, and note that |F| = q. We will now show that F is a field.

1. Note that 0 ∈ F, since P (0) = 0.

2. If a, b ∈ F∗, then aq = a and bq = b, and so

P (
a

b
) = (

a

b
)q − (

a

b
) =

aq

bq
− a

b
=
a

b
− a

b
= 0.

Thus a
b ∈ F∗, and so F∗ is a group under multiplication.

3. If a, b ∈ F, then aq = a and bq = b, and so

P (a− b) = (a− b)q − (a− b).

We now make a very very important observation2:

Observation 4. If L is a field of characteristic p, and a, b ∈ L, then

(a+ b)p = ap + bp.

Proof. Binomial theorem, along with the fact that
(
p
r

)
= 0 mod p when 0 < r < p.

Iterating this observation, we have that for every m,

(a+ b)p
m

= ap
m

+ bp
m

.

Thus3

P (a− b) = aq + (−b)q − a+ b = a+ (−1)qb− a+ b = 0,

so a− b ∈ F. This implies that F is a group under addition.

Thus F is a finite field of cardinality q.

2This is sometimes called the freshman’s dream, because freshmen prefer working in fields of positive characteristic, especially
during Calculus 1.

3Note that if q is even, then L is of characteristic 2, and so b + b = (1 + 1) · b = 0.
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2.7 Uniqueness of Fq

We now show that this field is unique: any two fields of cardinality q are isomorphic.

Lemma 5 (Uniqueness of the splitting field). Let K be a field and let P (X) ∈ K[X]. Let F1,F2 be fields
such that for i ∈ {1, 2} (1) K ⊆ Fi, (2) P (X) factors into linear factors in Fi[X], and (3) No strict subfield
of Fi satisfies both (1) and (2).
Then F1

∼= F2.

Proof. This lemma is proved as follows. If P (X) factors into linear factors in K, then F1
∼= K ∼= F2, and we

are done. Otherwise, let M(X) be an irreducible factor of P (X). Since P (X) factors into linear factors in
Fi[X], then so does M(X). Let αi ∈ Fi be a root of M(X). Define Ki = K(αi) ⊆ Fi. From the previous
section, we have Ki ∼= K[X]/〈M(X)〉. Thus K1

∼= K2, and so we may identify K1 with K2, and call this field
K0. We thus have that: (1) K0 ⊆ Fi, (2) P (X) factors into linear factors in Fi[X], and (3) No strict subfield
satisfies both (1) and (2). We can then proceed by induction.

Now suppose F1,F2 are finite fields of cardinality q = pn, where p is prime. Set K = Fp, and we have that
K ⊆ Fi. Now we know that each Fi contains all the q roots of Xq −X, and no strict subfield of Fi can (just
because it is not big enough to). Thus, by the previous lemma, F1

∼= F2, as desired.
This unique finite field of cardinality q is called THE Galois field GF (q). Once you get to know it better,
you may call it simply GF (q), or even Fq.
The construction of GF (q) as an algebraic extension of a prime field was first done by Galois. The observation
that GF (q)s are the only fields was made by E. H. Moore.
Another corollary of the uniqueness, is that if M(X) ∈ Fq[X] is an irreducible polynomial of degree d, then
the primitive extension Fq[X]/〈M(X) is isomorphic to Fqd .

Remark If you already know/believe the existence and uniqueness of the algebraic closure of a field, then
it simplifies some of what we did above. Take Fp, and then F = {α ∈ Fp | αq = α} is the unique finite field
of cardinality q.

2.8 Subfield structure

Let q = pn, where p is prime.
What are the subfields of Fq? Suppose F` is a subfield of Fq. First note that we must have that ` is a
power of p, say ` = pr. Also, we must have that F∗` is a subgroup of F∗q , and so |F∗` = pr − 1 should divide
F∗q = pn − 1.
This can only happen if r | n (exercise).
Conversely, if r | n, then pr − 1 divides pn − 1, and so Xpr−1 − 1 divides Xpn−1 − 1, and so X` −X divides
Xq −X.
Thus, since Xq−X =

∏
α∈Fq

(X−α), there are ` distinct roots of X`−X in Fq, and by previous discussions,
they form the field F`. Furthermore, Fq contains exactly one copy of F`.
This completely determines the subfield lattice of a given finite field.

2.9 Conjugates

Let K ⊆ F be finite fields, with |K| = q and |F| = qn.

Lemma 6. Let α ∈ F. Let P (X) ∈ K[X]. Then P (αq) = P (α)q.

Proof. Let P (X) =
∑d
i=0 aiX

i. Then

P (αq) =

d∑
i=0

aiα
qi =

d∑
i=0

aqiα
iq = (

d∑
i=0

aiα
i)q = P (α)q.

(Here we used the fact that aq = a for each a ∈ K, and (α+ β)q = αq + βq for each α, β ∈ F).
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Let α ∈ F, and let M(X) ∈ K[X] be the minimal polynomial of α. Let d be the degree of M(X).

By the above lemma, M(X) also has αq, αq
2

, . . . , αq
i

, . . . as roots. Let r be the smallest positive integer such

that αq
r

= α. Then α, αq, . . . , αq
r−1

are distinct roots of M(X). Thus r ≤ d.
On the other hand, αq

r

= α implies that α ∈ Fqr . Thus K(α) ⊆ Fqr . But K(α) ∼= K[X]/〈M(X)〉, and so
K(α) = Fqd . So d ≤ r.
Thus d = r.
To summarize: if α ∈ Fqn , and M(X) ∈ Fq[X] is its minimal polynomial, with deg(M(X)) = d, then:

M(X) = (X − α) · (X − αq) · . . . · (X − αq
d−1

).

Furthermore, Fq(α) ∼= Fqd , and d | n.
We can also do this in the other direction. Let M(X) ∈ Fq[X] be an irreducible polynomial of degree d. Let
n be a multiple of d. Then M(X) factors into linear factors in Fqn [X]:

M(X) = (X − α) · (X − αq) · . . . · (X − αq
d−1

),

where α ∈ Fqn is any root of M(X). (The only new step to verify here is that M(X) has a root in Fqn :
this follows from the fact that M(X) has a root in Fq[X]/〈M(X)〉, which is isomorphic to Fqd , which is a
subfield of Fqn).
The above discussion gives us the following important lemma.

Lemma 7. Let Id ⊆ Fq[X] be the set of monic irreducible polynomials in Fq[X] of degree exactly d. We
have the following polynomial equality:

Xqn −X =
∏
d|n

∏
M(X)∈Id

M(X).

2.10 The additive group F
Let F be a finite field of cardinality q = pn (where p is a prime).
By what we have already discussed, the additive group F is isomorphic to Znp .

2.11 The multiplicative group F∗

Let F be a finite field of cardinality q = pn (where p is a prime).
We will now show that F∗ is isomorphic to the cyclic group Zq−1.
The key ingredient is the classification of finite abelian groups:

Theorem 8. For every finite abelian group G, there is a unique tuple (d1, . . . , dk) of positive integers such
that 1 < d1 | d2 | d3 | . . . | dk and:

G ∼=
k⊕
i=1

Zdi .

This theorem implies a simple criterion for cyclicity:

Corollary 9. A finite abelian group G is cyclic if and only if for every d ≥ 1, the number of α ∈ G such
that dα = 0 is at most d.

Proof. The only if direction is trivial.
For the if direction, let G be a finite abelian group such that for every d, the number of α ∈ G such that
dα = 0 is at most d. Let (d1, . . . , dk) be the tuple such that 1 < d1 | d2 | d3 | . . . | dk and

G ∼=
k⊕
i=1

Zdi .

Then |G| =
∏k
i=1 di, and every element α of G satisfies dk ·α = 0. Thus k must equal 1 and so G is cyclic.

6



We now show that this criterion is applicable to F∗.

Lemma 10. For every d ≥ 1, the number of α ∈ F∗ such that αd = 1 is at most d.

Proof. Every such α is a root of the nonzero degree d polynomial P (X) = Xd − 1.

We thus get:

Theorem 11. F∗ ∼= Zq−1.

In particular, there are elements α of F∗ for which 1, α, α2, . . . , αq−2 are all distinct, and F∗ = {1, α, . . . , αq−2}.
Such an α is called a generator for F∗q .

2.12 The primitive element theorem

We can now use this to prove the primitive element theorem for finite extensions of Fq.

Theorem 12. For every prime power q, for every n > 1, there exists α ∈ Fqn such that Fq(α) = Fqn .

Proof. We want α ∈ F∗qn such that αq
r 6= α for all r < n. Equivalently, we want α such that αq

r−1 6= 1 for
all r < n. Take α to be a generator of F∗qn .

Another proof follows by noting that all subfields of Fqn (which contain Fq) are of size ≤ qn/2, and there is
at most one subfield of size qr for each r ≤ n/2. Any α not in the union of these subfields does the job for

us. Such an α (in fact many α) exist since qn −
∑n/2
j=1 q

j > 0.

Lemma 13. For every prime power q and every n > 0, there exists an irreducible polynomial P (X) ∈ Fq[X]
of degree exactly n.

Proof. Let α ∈ Fqn such that Fq(α) = Fqn . Let P (X) be the minimal polynomial of α.

Later we will exactly count the number of irreducible polynomials of degree n.

2.13 Trace and Norm

Let q be a prime power, n > 0, and consider the fields Fq and Fqn .
The trace from Fqn to Fq is the following map:

Tr(α) =

n−1∑
i=0

αq
i

.

Tr has the following properties:

1. One verifies that Tr(α)q = Tr(α), and thus the image of Tr is indeed contained in Fq. This is a very
illuminating calculation if you are new to finite fields. Try it!

2. If the minimal polynomial of α is

M(X) = Xd + c1X
d−1 + . . .+ cd,

then Tr(α) equals n
d · c1.

3. Observe that Tr is an Fq-linear map of vector spaces.

4. What is the dimension of the image and of the kernel of Tr? The image is at most 1 dimensional, and
hence the kernel must have dimension either n or n− 1.

If the dimension of the kernel of Tr is n, then this means that Tr is 0 on all of Fqn . But Tr is also a
nonzero polynomial of degree at most qn−1, and so it cannot be 0 on more than qn−1 points. Thus the
dimension of the kernel of Tr equals n− 1, and thus the image of Tr equals all of Fq.
As a consequence, for every a ∈ Fq, |Tr−1(a)| = qn−1.
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5. Out of the qn Fq-linear maps from Fqn to Fq, Tr is one of them. In fact, for every β ∈ Fq, we have the
linear map Tβ : Fqn → Fq, with Tβ(α) = Tr(β · α). By the previous discussion, have that Tβ is not the
identically 0 map for every nonzero β. Since Tβ − Tγ = Tβ−γ , we have that all the Tβ are distinct.

Thus every Fq-linear map from Fqn to Fq is of the form Tβ for some β ∈ Fqn . (This condition is
equivalent to separability of the extension Fqn/Fq).

The norm from Fqn to Fq is the following map:

Norm(α) =

n−1∏
i=0

αq
i

= α(qn−1)/(q−1).

Norm has the following properties:

1. One verifies that Norm(α)q = Norm(α), and thus the image of Norm is indeed contained in Fq.

2. If the minimal polynomial of α is

M(X) = Xd + c1X
d−1 + . . .+ cd,

then Norm(α) equals c
n/d
d .

3. The only element with Norm equal to 0 is 0.

4. Thus Norm maps F∗qn to F∗q , and is in fact a multiplicative group homomorphism. Since both gropus

here are cyclic, we have the following situation: we have the group Zqn−1, and the map α 7→ qn−1
q−1 · α,

whose image equals the unique subgroup of Zqn−1 of size q − 1.

Thus Norm is onto F∗q , and every element a ∈ F∗q is such that |Norm−1(a)| = (qn − 1)/(q − 1).

The kernels of norm and trace have the following convenient characterizations.

Theorem 14 (Hilbert Theorems 90). 1. For α ∈ Fqn , Tr(α) = 0 iff there exists β ∈ Fqn with α = βq−β.

2. For α ∈ F∗qn , Norm(α) = 1 iff there exists β ∈ F∗qn with α = βq/β.

Proof. Let S : Fqn → Fqn be the map S(β) = βq − β. The first part can be proved by noting that S is
an Fq-linear map, the image of S is contained in the kernel of Tr (this is a simple calculation: Tr(S(β)) =
βq

n − β = 0), the kernel of S has dimension at most 1 (since S is a nonzero degree q polynomial, and hence
has at most q zeroes), and thus the image of S has dimension n− 1.
The second part is a simple consequence of the cyclicity of F∗qn . For d | qn−1, an element α is a dth root of 1 if

and only if it can be expressed as β(qn−1)/d for some β ∈ F∗qn . We apply this fact with d = (qn−1)/(q−1).

2.14 Computational aspects

Many of the basic theorems about finite fields that we just saw have pretty tricky and indirect proofs. Their
trickiness can be measured by the difficulty of making them constructive. Here are some open problems.

Problem 15 (Open problem). Find a deterministic algorithm, which when given a prime p and an integer
n, constructs the finite field Fpn in time poly(log p, n).

The problem is even open for n = 2!
Here construct could be taken to mean “find an irreducible polynomial in Fp[X] of degree n”. It is known
how to do this with a randomized algorithm, and also how to do this deterministically in time poly(p, n).

Problem 16 (Open problem). Find a (possibly randomized) algorithm, which when given a prime p, com-
putes a generator of F∗p in time poly(log p).
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It is known that under the Extended Riemann Hypothesis, some integer at most poly(log p) is a generator
of F∗p. But unfortunately, even the following is an open problem.

Problem 17 (Open problem). Find a (possibly randomized) algorithm, which when given a prime p and an
integer a < p, decides whether a is a generator of F∗p in time poly(log p).

These problems are also open for other finite fields too.

2.15 Other general comments about finite fields

One may wonder why the prime fields Fp got singled out as the easily constructed fields, and we had to
struggle so much to construct the other finite fields. Maybe only Fps are “natural” and worth studying, and
the other fields only exist just because of some annoying accident. But in fact, the study of all finite fields
is one unified subject.
Here are some related remarks.

• General finite fields arise as quotients of general number rings. For example, in the ring Z[i] (where i
is a square root of −1), the ideal 〈7〉 has the property that

Z[i]/〈7〉 ∼= F49.

In general, every Fq arises as the quotient of a number ring by an ideal.

• Some theorems about prime fields Fp do not hold for general fields Fq. This often helps us appreciate
the subtleties in the proofs of the theorems. We will see a number of theorems, especially when we talk
about the sum-product phenomenon, where our proofs will have to differentiate between the different
q’s.

• Even if you care only about Fp, there are some very basic and fundamental theorems about Fp which
we can only prove by considering extensions Fpn . For example, the Weil theorems on counting Fp
solutions of Q(X,Y ) = 0, take advantage of information from ALL extensions Fpn simultaneously.

• There are many analogies that help transfer proof methods and intuition between Fq’s for different q’s.

A Other characterizations of finite fields

It turns out that finite fields (as opposed to general fields) can be characterized by even simpler conditions.
An integral domain is a commutative ring with no nontrivial zero divisors: if a · b = 0, then either a = 0 or
b = 0. We have the following simple fact.

Lemma 18. Every finite integral domain is a field.

A skew field is almost a field, except that we drop the requirement that · be commutative. Wedderburn’s
little theorem deals with finite skew fields.

Theorem 19. Every finite skew field is a field.
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