Error-Correcting Codes (Spring 2016) Rutgers University Swastik Kopparty Scribes: Brandon Butch and Sijian Tang

1 Introduction

Last time we saw codes with constant $R, \delta > 0$ as $n \to \infty$. Today's focus will be codes with constant distance d (not relative distance) that meet the volume packing bound. Such codes are called **BCH Codes**.

1.1 Essentials of finite fields

BCH codes take advantage of certain properties of finite fields (that may not hold true for fields in general).

Fact 1. Let \mathbb{F}_{2^m} denote the finite field of 2^m elements. The following hold

- 1. \mathbb{F}_{2^m} is a vector space of dimension m over \mathbb{F}_2
- 2. \mathbb{F}_{2^m} has characteristic 2 ($\forall x \in \mathbb{F}_{2^m} : 2x = x + x = 0$)
- 3. $\forall x, y \in \mathbb{F}_{2^m} : (x+y)^2 = x^2 + 2xy + y^2 = x^2 + y^2 \text{ since } 2xy = 0$

Example 2. For m = 2 we have $\mathbb{F}_{2^2} = \{0, 1, \alpha, \alpha + 1\}$ with field operations summarized in the following tables

+	0	1	α	$\alpha + 1$
0	0	1	α	$\alpha + 1$
1	1	0	$\alpha + 1$	α
α	α	$\alpha + 1$	0	1
$\alpha + 1$	$\begin{array}{c} \alpha \\ \alpha + 1 \end{array}$	α	1	0

Addition for \mathbb{F}_{2^2}

, ,	0	-	α	$\alpha + 1$
0	0	0	0	0
1	0	$\begin{array}{c} 0 \\ 1 \\ \alpha \\ \alpha + 1 \end{array}$	α	$\alpha + 1$
α	0	α	$\alpha + 1$	1
$\alpha + 1$	0	$\alpha + 1$	1	α

Multiplication for \mathbb{F}_{2^2}

Let $\alpha_1, \ldots, \alpha_m$ be a basis for $\mathbb{F}_{2^m}/\mathbb{F}_2$. Then every element of \mathbb{F}_{2^m} can be written as

$$\sum_{i=1}^{m} c_i \alpha_i$$

where all $c_i \in \mathbb{F}_2$. We will represent elements using the following function

$$\phi: \mathbb{F}_{2^m} \to \mathbb{F}_{2^m}$$
$$\phi(\beta) = (c_1 c_2 \cdots c_m)$$

such that $\sum c_i \alpha_i = \beta$. $\phi(\beta)$ can be viewed as the concatenation of the c_i 's. This is nothing more than a representation of the elements of \mathbb{F}_{2^m} as m bit strings. (Note that there are 2^m elements of \mathbb{F}_{2^m} , the same as the number of binary strings of length m.) Each $\phi(\beta)$ can be thought of as a bit string that corresponds uniquely with an element of \mathbb{F}_{2^m} , but the operations (particularly multiplication) would need to be redefined more carefully if one wanted to perform them directly on the bit string representations.

Example 3. Using $\{1, \alpha\}$ as a basis for \mathbb{F}_{2^2} , we can express each element as $c_1 1 + c_2 \alpha$ where $c_1, c_2 \in \{0, 1\}$. This gives us the following representations

$$\phi(0) = 00$$

$$\phi(1) = 10$$

$$\phi(\alpha) = 01$$

$$\phi(\alpha + 1) = 11.$$

1.2 Essentials of Vandermonde matrices

Define a $k \times k$ matrix

$$V = \begin{pmatrix} 1 & 1 & \dots & 1 \\ \gamma_1 & \gamma_2 & \dots & \gamma_k \\ \gamma_1^2 & \gamma_2^2 & \dots & \gamma_k^2 \\ \vdots & \vdots & \ddots & \vdots \\ \gamma_1^{k-1} & \gamma_2^{k-1} & \dots & \gamma_k^{k-1} \end{pmatrix}$$

In general, element γ_i^{i-1} occupies coordinate (i, j). This is called a Vandermonde matrix.

Fact 4. If $\gamma_1, \ldots, \gamma_k$ are all distinct, then this matrix is nonsingular.

Proof. Suppose otherwise. Let u be a nonzero vector such that $Vu^T = 0$. Explicitly, we have $\forall i$

$$u_0 + u_1\gamma_i + u_2\gamma_i^2 + \dots + u_{k-1}\gamma_i^{k-1} = 0$$

which would imply that the polynomial $\sum_{j=0}^{k-1} u_j x^j$ vanishes at k distinct points (namely $\gamma_1, \ldots, \gamma_k$). This is a contradiction, since the polynomial has degree k-1, therefore it can have at most k-1 distinct roots.

2 BCH Codes

2.1 Warm Up

As an introduction to BCH Codes, let's examine the case for d = 5. For \mathbb{F}_{2^m} with a fixed basis and ϕ as above, define the party check matrix

$$H = \begin{pmatrix} | & | & | & | \\ \phi(\alpha_1) & \phi(\alpha_2) & \cdots & \phi(\alpha_{2^m - 1}) \\ | & | & | \\ \phi(\alpha_1^3) & \phi(\alpha_2^3) & \cdots & \phi(\alpha_{2^m - 1}^3) \\ | & | & | \end{pmatrix}$$

where $\{\alpha_1, \alpha_2, \ldots, \alpha_{2^m-1}\} = \mathbb{F}_{2^m} \setminus \{0\}$. This is a $2m \times 2^m - 1$ matrix. Each column in the upper half (i.e. the upper *m* rows) consists of the image under ϕ of a *nonzero* element of \mathbb{F}_{2^m} ; the lower half of the column consists of the image of that element cubed. Note that because of the way we defined ϕ , the upper half will simply be all nonzero bit strings of length *m*.

Claim 5. The code described by H has distance at least 5.

Proof. It suffices to show that any 4 columns of H are linearly independent over \mathbb{F}_2 . Consider 4 arbitrary columns and let $\beta_1, \beta_2, \beta_3, \beta_4$ be the corresponding representations in $\mathbb{F}_{2^m} \setminus \{0\}$. Suppose the columns were dependent with coefficients $e_1, e_2, e_3, e_4 \in \mathbb{F}_2$ such that

$$\sum_{i=1}^{4} e_i \phi(\beta_i) = 0$$
$$\sum_{i=1}^{4} e_i \phi(\beta_i^3) = 0.$$

By the linearity of ϕ , this gives us

$$\phi\left(\sum_{i=1}^{4} e_i\beta_i\right) = 0$$
$$\phi\left(\sum_{i=1}^{4} e_i\beta_i^3\right) = 0$$

which implies

$$\sum_{i=1}^{4} e_i \beta_i = 0 \tag{1}$$

$$\sum_{i=1}^{4} e_i \beta_i^3 = 0.$$
 (2)

We square (1), using the fact that the field has characteristic 2, to obtain

$$\left(\sum_{i=1}^{4} e_i \beta_i\right)^2 = \sum_{i=1}^{4} e_i \beta_i^2 = 0.$$
 (3)

Repeat this step, squaring again to obtain

$$\left(\sum_{i=1}^{4} e_i \beta_i^2\right)^2 = \sum_{i=1}^{4} e_i \beta_i^4 = 0.$$
(4)

Now we express (1), (2), (3), (4) as a combined system

$$\begin{pmatrix} \beta_1 & \beta_2 & \beta_3 & \beta_4 \\ \beta_1^2 & \beta_2^2 & \beta_3^2 & \beta_4^2 \\ \beta_1^3 & \beta_2^3 & \beta_3^3 & \beta_4^3 \\ \beta_1^4 & \beta_2^4 & \beta_3^4 & \beta_4^4 \end{pmatrix} \begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

If the matrix of β 's is nonsingular (i.e. its determinant is nonzero), then the only way this equation can be satisfied is if

$$\begin{pmatrix} e_1 \\ e_2 \\ e_3 \\ e_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}.$$

The matrix

$$M = \begin{pmatrix} \beta_1 & \beta_2 & \beta_3 & \beta_4 \\ \beta_1^2 & \beta_2^2 & \beta_3^2 & \beta_4^2 \\ \beta_1^3 & \beta_2^3 & \beta_3^3 & \beta_4^3 \\ \beta_1^4 & \beta_2^4 & \beta_3^4 & \beta_4^4 \end{pmatrix}$$

is almost Vandermonde. It is easy to work out that, since all β_i are nonzero and distinct, M is nonsingular. Therefore, it must be the case that $e_1 = e_2 = e_3 = e_4 = 0$, which implies that any 4 columns of H are indeed linearly independent.

How large is this code? Recall H has dimensions $2m \times 2^m - 1$. Let $n = 2^m - 1$, then

$$|C| \geq \frac{2^n}{2^{2m}} = \frac{2^n}{(n+1)^2}.$$

Recall the volume packing bound for distance 5:

$$|C| \le \frac{2^n}{B(2)} = \frac{2^n}{(n+1)\binom{n}{2}} = \Theta\left(\frac{2^n}{n^2}\right).$$

2.2 BCH Codes in general

How can we generalize the above construction to larger distances? For some $t \in \mathbb{N}$, we define the parity check matrix

$$H = \begin{pmatrix} | & | & | & | \\ \phi(\alpha_1) & \phi(\alpha_2) & \cdots & \phi(\alpha_{2^m-1}) \\ | & | & | & | \\ \phi(\alpha_1^3) & \phi(\alpha_2^3) & \cdots & \phi(\alpha_{2^m-1}^3) \\ | & | & | & | \\ \phi(\alpha_1^5) & \phi(\alpha_2^5) & \cdots & \phi(\alpha_{2^m-1}^5) \\ | & | & | & | \\ \vdots & \vdots & \ddots & \vdots \\ | & | & | & | \\ \phi(\alpha_1^{2t-1}) & \phi(\alpha_2^{2t-1}) & \cdots & \phi(\alpha_{2^m-1}^{2t-1}) \end{pmatrix}$$

This is an extension the earlier definition, where row *i* corresponds with exponent 2i-1. As above, the α 's run over all elements of $\mathbb{F}_{2^m} \setminus \{0\}$. *H* has dimensions $tm \times 2^m - 1$.

Claim 6. The code described by H has distance at least 2t + 1.

Proof. The proof mimics the one given earlier. We need to show that any 2t columns are linearly independent. Suppose columns corresponding to $\beta_1, \ldots, \beta_{2t}$ were dependent with coefficients $e_1, \ldots, e_{2t} \in \mathbb{F}_2$. Then, as before, using linearity of ϕ , we know that $\forall j \leq t$

$$\sum_{i=1}^{2t} e_i \beta_i^{2j-1} = 0.$$

We need to show $\forall l \leq 2t$

$$\sum_{i=1}^{2t} e_i \beta_i^l = 0.$$

We know that this holds for odd $l \leq 2t$. But, if we know that it holds for some l', then we know it holds for 2l' because

$$\sum_{i=1}^{2t} e_i \beta_i^{2l'} = \left(\sum_{i=1}^{2t} e_i \beta_i^{l'}\right)^2$$

since our field has characteristic 2. Now construct the matrix M as in the earlier proof, and realize that M is a column-scaling of a Vandermonde matrix with distinct, nonzero β 's. Therefore, M is nonsingular and so the columns of H are linearly independent.

What is the size of this code? Let $n = 2^m - 1$, then

$$|C| \ge \frac{2^n}{2^{nt}} = \frac{2^n}{(n+1)^t} = \Theta\left(\frac{2^n}{n^t}\right).$$

This matches the volume packing bound up to a constant factor.

3 Relation between BCH code and RS code

Consider the dual of RS code:

Take RS code over \mathbb{F}_q with evaluation set \mathbb{F}_q and code word be all polynomials of degree $\langle k$. What is C^{\perp} ?

$$C^{\perp} = \{ f : \mathbb{F}_q \to \mathbb{F}_q | \forall p(x) \text{ of degree} < k, \sum_{x \in \mathbb{F}_q} f(x) p(x) = 0 \}$$

Claim 7. $\forall m < q-1$,

$$\sum_{x\in \mathbb{F}_q} x^m = 0$$

Take $y \in \mathbb{F}_q \setminus \{0\},$ s.t. $y^m \neq 1.$ (exist since $deg(x^m-1) < q-1.$) Then:

$$\sum_{x \in \mathbb{F}_q} (xy)^m = \sum_{x \in \mathbb{F}_q} x^m$$
$$(y^m - 1) \cdot \sum_{x \in \mathbb{F}_q} x^m = 0$$
$$\Longrightarrow \sum_{x \in \mathbb{F}_q} x^m = 0$$

This directly implies that $x^i \perp x^j$ if i + j < q - 1So $x^i \in C^{\perp}$ for each $i \leq q - 1 - k$. Let $S = span\{1, x, ..., x^{q-1-k}\}$. Then $dim(S) = x^{q-k}$ That means: $S \subset C^{\perp}$ and $dim(S) = dim(C^{\perp})$. So $S = C^{\perp}$. So this is the parity check matrix for C.

This gives a quick proof that C has distance $\geq q - k - 1$: Any q - k colums form a Vandermonde Matrix and so are linear independent.

Let $q = 2^m$, $\mathbb{F}_2 \subset \mathbb{F}_q$.

Claim 8. Let $\widetilde{C} = BCH$ code with parameter $t = \lfloor \frac{q-k}{2} \rfloor$, then

$$\hat{C} = \hat{C} := \{ p \in C \text{ s.t. } p(x) \in \mathbb{F}_2 \text{ for all } x \in \mathbb{F}_q \}$$

Proof. For any $v \in ((F)_2)^n$, we want to show that:

$$Hv = 0$$
 if and only if $Hv = 0$

Where \widetilde{H} is the parity check matrix for \widehat{C} , we have:

$$\widetilde{H} = \begin{pmatrix} \phi(x) & \\ \phi(x^3) & \\ \vdots & \\ \phi(x^{q-1-k}) & \end{pmatrix}$$

If $\widetilde{H}v = 0$, then $\widetilde{\widetilde{H}}v = 0$, where $\widetilde{\widetilde{H}} = \widetilde{H}$ +even rows. We can see that $\widetilde{\widetilde{H}} = \phi(H)$, which finishes the proof.

So BCH code with parameter t are contained in RS code with distance 2t + 1. So using BerlekampWelch algorithm one can decode BCH code of parameter t r from t errors in time ploy(n). (n^t is trivial).

Dual of BCH codes are called Dual-BCH codes. Dual-BCH codes with parameter t is a code with $C \subset \mathbb{F}_2^n$, $|C| = O(n^t)$.

Turns out that C has distance $\frac{1}{2} - \frac{t}{\sqrt{n}}$. (Follows from Weil Bound)

Remarkable because:

- 1. Greedy/Random code with n^t codeword has distance $\frac{1}{2} \sqrt{\frac{\log(n)}{n}}$
- 2. Optimal tradeoff for distance vs. size in the region.

How do codeword of C looks like?

$$f: \mathbb{F}_{2^m} \to \mathbb{F}_2$$
$$f(x) = \text{first bit of } \phi(\sum_{i=0}^{2t-1} a_i x^i)$$

Equivalently, pick \mathbb{F}_2 linear function $\ell : \mathbb{F}_{2^m} \to \mathbb{F}_2$.

$$f(x) = \ell(\sum_{i=0}^{2t-1} a_i x^i)$$