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1 Introduction

Last time we saw codes with constant R, δ > 0 as n → ∞. Today’s focus will be codes with
constant distance d (not relative distance) that meet the volume packing bound. Such codes are
called BCH Codes.

1.1 Essentials of finite fields

BCH codes take advantage of certain properties of finite fields (that may not hold true for fields in
general).

Fact 1. Let F2m denote the finite field of 2m elements. The following hold

1. F2m is a vector space of dimension m over F2

2. F2m has characteristic 2 (∀x ∈ F2m : 2x = x+ x = 0)

3. ∀x, y ∈ F2m : (x+ y)2 = x2 + 2xy + y2 = x2 + y2 since 2xy = 0

Example 2. For m = 2 we have F22 = {0, 1, α, α + 1} with field operations summarized in the
following tables

+ 0 1 α α + 1

0 0 1 α α + 1
1 1 0 α + 1 α
α α α + 1 0 1
α + 1 α + 1 α 1 0

Addition for F22

× 0 1 α α + 1

0 0 0 0 0
1 0 1 α α + 1
α 0 α α + 1 1
α + 1 0 α + 1 1 α

Multiplication for F22
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Let α1, . . . , αm be a basis for F2m/F2. Then every element of F2m can be written as

m∑
i=1

ciαi

where all ci ∈ F2. We will represent elements using the following function

φ : F2m → F2m

φ(β) = (c1c2 · · · cm)

such that
∑
ciαi = β. φ(β) can be viewed as the concatenation of the ci’s. This is nothing more

than a representation of the elements of F2m as m bit strings. (Note that there are 2m elements
of F2m , the same as the number of binary strings of length m.) Each φ(β) can be thought of as
a bit string that corresponds uniquely with an element of F2m , but the operations (particularly
multiplication) would need to be redefined more carefully if one wanted to perform them directly
on the bit string representations.

Example 3. Using {1, α} as a basis for F22, we can express each element as c11 + c2α where
c1, c2 ∈ {0, 1}. This gives us the following representations

φ(0) = 00

φ(1) = 10

φ(α) = 01

φ(α+ 1) = 11.

1.2 Essentials of Vandermonde matrices

Define a k × k matrix

V =



1 1 . . . 1

γ1 γ2 . . . γk

γ21 γ22 . . . γ2k
...

...
. . .

...

γk−11 γk−12 . . . γk−1k


.

In general, element γi−1j occupies coordinate (i, j). This is called a Vandermonde matrix.

Fact 4. If γ1, . . . , γk are all distinct, then this matrix is nonsingular.

Proof. Suppose otherwise. Let u be a nonzero vector such that V uT = 0. Explicitly, we have ∀i

u0 + u1γi + u2γ
2
i + · · ·+ uk−1γ

k−1
i = 0

which would imply that the polynomial
∑k−1

j=0 ujx
j vanishes at k distinct points (namely γ1, . . . , γk).

This is a contradiction, since the polynomial has degree k − 1, therefore it can have at most k − 1
distinct roots.
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2 BCH Codes

2.1 Warm Up

As an introduction to BCH Codes, let’s examine the case for d = 5. For F2m with a fixed basis and
φ as above, define the party check matrix

H =



∣∣∣ ∣∣∣ ∣∣∣
φ(α1) φ(α2) · · · φ(α2m−1)∣∣∣ ∣∣∣ ∣∣∣
φ(α3

1) φ(α3
2) · · · φ(α3

2m−1)∣∣∣ ∣∣∣ ∣∣∣


where {α1, α2, . . . , α2m−1} = F2m \ {0}. This is a 2m× 2m − 1 matrix. Each column in the upper
half (i.e. the upper m rows) consists of the image under φ of a nonzero element of F2m ; the lower
half of the column consists of the image of that element cubed. Note that because of the way we
defined φ, the upper half will simply be all nonzero bit strings of length m.

Claim 5. The code described by H has distance at least 5.

Proof. It suffices to show that any 4 columns of H are linearly independent over F2. Consider 4
arbitrary columns and let β1, β2, β3, β4 be the corresponding representations in F2m \ {0}. Suppose
the columns were dependent with coefficients e1, e2, e3, e4 ∈ F2 such that

4∑
i=1

eiφ(βi) = 0

4∑
i=1

eiφ(β3i ) = 0.

By the linearity of φ, this gives us

φ

(
4∑

i=1

eiβi

)
= 0

φ

(
4∑

i=1

eiβ
3
i

)
= 0

which implies

4∑
i=1

eiβi = 0 (1)

4∑
i=1

eiβ
3
i = 0. (2)
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We square (1), using the fact that the field has characteristic 2, to obtain(
4∑

i=1

eiβi

)2

=
4∑

i=1

eiβ
2
i = 0. (3)

Repeat this step, squaring again to obtain(
4∑

i=1

eiβ
2
i

)2

=

4∑
i=1

eiβ
4
i = 0. (4)

Now we express (1), (2), (3), (4) as a combined system
β1 β2 β3 β4

β21 β22 β23 β24

β31 β32 β33 β34

β41 β42 β43 β44




e1

e2

e3

e4

 =


0

0

0

0

 .

If the matrix of β’s is nonsingular (i.e. its determinant is nonzero), then the only way this equation
can be satisfied is if 

e1

e2

e3

e4

 =


0

0

0

0

 .

The matrix

M =


β1 β2 β3 β4

β21 β22 β23 β24

β31 β32 β33 β34

β41 β42 β43 β44


is almost Vandermonde. It is easy to work out that, since all βi are nonzero and distinct, M is
nonsingular. Therefore, it must be the case that e1 = e2 = e3 = e4 = 0, which implies that any 4
columns of H are indeed linearly independent.

How large is this code? Recall H has dimensions 2m× 2m − 1. Let n = 2m − 1, then

|C| ≥ 2n

22m
=

2n

(n+ 1)2
.

Recall the volume packing bound for distance 5:

|C| ≤ 2n

B(2)
=

2n

(n+ 1)
(
n
2

) = Θ

(
2n

n2

)
.

4



2.2 BCH Codes in general

How can we generalize the above construction to larger distances? For some t ∈ N, we define the
parity check matrix

H =



∣∣∣ ∣∣∣ ∣∣∣
φ(α1) φ(α2) · · · φ(α2m−1)∣∣∣ ∣∣∣ ∣∣∣
φ(α3

1) φ(α3
2) · · · φ(α3

2m−1)∣∣∣ ∣∣∣ ∣∣∣
φ(α5

1) φ(α5
2) · · · φ(α5

2m−1)∣∣∣ ∣∣∣ ∣∣∣
...

...
. . .

...∣∣∣ ∣∣∣ ∣∣∣
φ(α2t−1

1 ) φ(α2t−1
2 ) · · · φ(α2t−1

2m−1)



.

This is an extension the earlier definition, where row i corresponds with exponent 2i−1. As above,
the α’s run over all elements of F2m \ {0}. H has dimensions tm× 2m − 1.

Claim 6. The code described by H has distance at least 2t+ 1.

Proof. The proof mimics the one given earlier. We need to show that any 2t columns are lin-
early independent. Suppose columns corresponding to β1, . . . , β2t were dependent with coefficients
e1, . . . , e2t ∈ F2. Then, as before, using linearity of φ, we know that ∀j ≤ t

2t∑
i=1

eiβ
2j−1
i = 0.

We need to show ∀l ≤ 2t
2t∑
i=1

eiβ
l
i = 0.

We know that this holds for odd l ≤ 2t. But, if we know that it holds for some l′, then we know it
holds for 2l′ because

2t∑
i=1

eiβ
2l′
i =

(
2t∑
i=1

eiβ
l′
i

)2

since our field has characteristic 2. Now construct the matrix M as in the earlier proof, and realize
that M is a column-scaling of a Vandermonde matrix with distinct, nonzero β’s. Therefore, M is
nonsingular and so the columns of H are linearly independent.

What is the size of this code? Let n = 2m − 1, then

|C| ≥ 2n

2nt
=

2n

(n+ 1)t
= Θ

(
2n

nt

)
.

This matches the volume packing bound up to a constant factor.
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3 Relation between BCH code and RS code

Consider the dual of RS code:
Take RS code over Fq with evaluation set Fq and code word be all polynomials of degree < k. What
is C⊥?

C⊥ = {f : Fq → Fq|∀p(x) of degree < k,
∑
x∈Fq

f(x)p(x) = 0}

Claim 7. ∀m < q − 1, ∑
x∈Fq

xm = 0

Take y ∈ Fq \ {0}, s.t. ym 6= 1. (exist since deg(xm − 1) < q − 1. )
Then: ∑

x∈Fq

(xy)m =
∑
x∈Fq

xm

(ym − 1) ·
∑
x∈Fq

xm = 0

=⇒
∑
x∈Fq

xm = 0

This directly implies that xi⊥xj if i+ j < q − 1
So xi ∈ C⊥ for each i ≤ q − 1 − k. Let S = span{1, x, ..., xq−1−k}. Then dim(S) = xq−k That
means: S ⊂ C⊥ and dim(S) = dim(C⊥). So S = C⊥.
So this is the parity check matrix for C.

1 . . . 1 . . . 1
x
x2

...
xq−1−k


This gives a quick proof that C has distance ≥ q − k − 1: Any q − k colums form a Vandermonde
Matrix and so are linear independent.

Let q = 2m, F2 ⊂ Fq.

Claim 8. Let C̃ =BCH code with parameter t = b q−k2 c, then

C̃ = Ĉ := {p ∈ C s.t. p(x) ∈ F2 for all x ∈ Fq}

Proof. For any v ∈ ((F )2)
n, we want to show that:

Hv = 0 if and only if H̃v = 0
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Where H̃ is the parity check matrix for Ĉ, we have:

H̃ =


φ(x)
φ(x3)

...
φ(xq−1−k)


If H̃v = 0, then

˜̃
Hv = 0, where

˜̃
H = H̃+even rows.

We can see that
˜̃
H = φ(H), which finishes the proof.

So BCH code with parameter t are contained in RS code with distance 2t+ 1.
So using BerlekampWelch algorithm one can decode BCH code of parameter t r from t errors in
time ploy(n). (nt is trivial).

Dual of BCH codes are called Dual-BCH codes. Dual-BCH codes with parameter t is a code with
C ⊂ Fn

2 , |C| = O(nt).
Turns out that C has distance 1

2 −
t√
n

. (Follows from Weil Bound)

Remarkable because:

1. Greedy/Random code with nt codeword has distance 1
2 −

√
log(n)

n

2. Optimal tradeoff for distance vs. size in the region.

How do codeword of C looks like?

f : F2m → F2

f(x) = first bit of φ(
2t−1∑
i=0

aix
i)

Equivalently, pick F2 linear function ` : F2m → F2.

f(x) = `(

2t−1∑
i=0

aix
i)
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