
Lecture 11: Locally Decodable Codes

Error-Correcting Codes (Spring 2016)
Rutgers University
Swastik Kopparty

Scribe: Alex Conway

1 Definition of a Locally Decodable Code

Let C ⊆ Σn be a code with encoding map E : Σk → C. Then C is called a q, ε-locally decodable
code if there exists an algorithm A such that for all messages x ∈ Σk and all r ∈ Σn such that
∆(r, E(x)) < ε, we have

Pr(A(i, r) 6= xi) < 0.01,

for all i ∈ [k], and moreover, A accesses only q coordinates of r.

It is important here that the probability is only over the internal randomness of the algorithm A.
There is no randomness over i ∈ [k]: the algorithm needs to work for all i.

In general, we will be interested in achieving local decodability with query complexity q = o(k). In
this lecture we will see subexponential

2 Recap: Reed-Muller Locally Decodable Codes

Reed-Muller codes turn out to be locally decodable with interesting parameters. This is the first
time we see Reed-Muller codes achieve something that we could not achieve with simply Reed-
Solomon codes.

Consider the Reed-Muller code of degree-d m-variate polynomials over Fq. The choice of encoding
map turns out to be important here. Choose a set S ⊆ Fmq which is an interpolating set for degree-d
m-variate polynomials over Fq. This means that for any assignment u : S → Fq, there is a unique

degree-d polynomial P (X1, . . . , Xm) such that P |S = u (in particular we have that |S| =
(
d+m
m

)
.

We will use S to specify the encoding map: given a message u ∈ F(d+m
m)

q , we view it as a function
u : S → Fq; The encoding of u is then the unique polynomial extension P .

Suppose we are given r : Fnq → Fq, with the promise that r is close to some polynomial P : Fnq → Fq
of degree less than or equal to d. The problem of local decoding is now the problem of recovering
P (x) for a given x ∈ S (we will even be able to recover P (x) for arbitrary x ∈ Fmq).

The main observation is that restricting a low-degree multivariate polynomial to a line gives a
low-degree univariate polynomial. This motivates the following algorithm.

• Pick a random line ` through x.

1

• Query r on ` \ {x}.

• We should see a univariate polynomial of degree less than or equal to d.

• Use this to deduce p(x).

2.1 Parameters: Constant Query

With t queries, Reed-Muller codes have length:

k → nO
(
k

1
t−Σ
)
.

There are known lower bounds:

• For t = 2, we must have n = 2Ω(k).

• For t > 2, we must have n ≥ k1+O(1/t).

It is an open question whether it is possible to have t = O(log k) and n = O(k).

2.2 Parameters: Constant rate

For m-variable Reed-Muller codes, we have:

k → m! · 2O(m) · k,

with rate R = 1
m! ·

1
2O(m) , and t = k1/m queries. (We’ll see another code that gives a better constant

rate later. . .)

2.3 State of the art

The best known constructions give:

• For fixed t, we can have n = 22
Õ((log k)1/ log t)

.

• For fixed rate R, we can have t = 2
√

log k.

In this lecture, we will see the first of these constructions. To motivate it, we will begin with a new
construction of a 2-query locally-decodable code.

2

3 Another Hadamard-like Locally Decodable Code

We will write F3 = {0, 1,−1}. Given a message c ∈ Fk3, consider

f : Zk2 → F3

f : x 7→
k∑
i=1

ci · (−1)〈x,ei〉,

where ei is the ith standard basis vector.

We use the following method to locally decode cj . Given r : Zk2 → F3, pick x uniformly in Zk2. Then
query r(x) ≈ f(x) and r(x + ej) ≈ f(x + ej), where by a ≈ b, we mean a and b are “supposed to
be equal.” Consider

r(x+ ej)− r(x) ≈ f(x+ ej)− f(x)

=

k∑
i=1

ci

[
(−1)〈x+ej ,ei〉 − (−1)〈x,ei〉

]
= cj(−1)〈x,ej〉

(
(−1)〈ej ,ej〉 − 1

)
= cj(−1)xj .

Therefore, we output (−1)xj (r(x+ ej)− r(x)).

4 Matching Vector Codes

These amazing codes were constructed by Efremenko, based on an important breakthrough of
Yekhanin (see also the paper of Raghavendra, and the follow-up papers of Dvir-Gopalan-Yekhanin
and BenAroya-Efremenko-TaShma).

Let S ⊆ Zm. Then we say a collection of vectors u1, v1, u2, v2, . . . , uk, vk is S-matching if

〈ui, vj〉 = 0 for i = j

〈ui, vj〉 ∈ S for i 6= j.

As an aside, if S = Zm \ {0}, m=2, how large can an S-matching collection be? One example
is with ui = (1, ei) = vi, where we have k = h − 1. Note that if we do a similar adjoining to a
S-matching collection, we get a set of orthogonal vectors, so this limits k ≤ h when m = 2.

Now, let u1, v1, u2, v2, . . . , uk, vk be a matching vector family in Zkm. Let F be some finite field with
m
∣∣(|F| − 1), and let ω ∈ F∗ be a primitive mth root of unity in F. Define

χi : Znm → F

χi : x 7→ ω〈x,ui〉.

3

For a message c ∈ Fk, define the codeword f : Zkm → F by

f =
k∑
i=1

ciχi.

To locally decode (and recover cj), we first pick x ∈ Znm uniformly at random. Then we query
r(x), r(x+vj), r(x+2vj), . . . , r(x+(m−1)vj), which “should be equal to” f(x), f(x+vj), . . . , f(x+
(m− 1)vj). (Note that if m is a constant, then this is a constant query decoder.) Now,

f(x+ λvj) =
h∑
i=1

ciχi(x+ λvj)

= cjχj(x+ λvj) +
∑
i 6=j

ciχi(x+ λvj)

The first term is equal to cjω
〈x,uj〉, by the definition of χj and because 〈uj , vj〉 = 0. Then the

second term ∑
i 6=j

ciχi(x+ λvj) =
∑
i 6=j

ciω
〈x+λvj ,ui〉

=
∑
i 6=j

ciω
〈x,ui〉ωλ〈vj ,ui〉

=
∑
α∈S

 ∑
〈vj ,ui〉=α

ciω
〈x,ui〉

ωλα

=
∑
α∈S

Bαω
λα,

where Bα is defined to be the inner sum for each α.

Thus, as a function of λ,

f(x+ λvj) = cjω
〈x,uj〉 +

∑
α∈S

Bαω
λα.

In other words, to decode we just need to find the constant term. The procedure is then to recover
the coefficients B0, {Bα}α∈S such that

f(x+ λy) = B0 +
∑
α∈S

Bαω
αλ,

which is solving an interpolation problem, where we need only query |S| + 1 values of λ. Then
output B0 · ω−〈x,uj〉.

4.1 Parameters of the Locally Decodable Code in terms of Parameters of the
Matching Vector Family

We have n = mh, k = k, and the number of queries is |S|+ 1 ≤ m

4

We are happy if S (or m) is constant, with k as large as possible; then we can handle 1
100|S|

errors. This begs the question: how large a matching vector family can you construct with these
parameters?

4.2 Constructing a Matching Vector Family

We will first consider the case where m is prime, then later we will take m composite. For now,
consider the case where m is prime, S = {1}, and our vectors are in Z`m. Take each ũi to be a
vector with 1’s in exactly m− 1 places, and 0’s elsewhere, and ṽi to be the vector (with `− (m− 1)
1’s) such that ũi + ṽi is the vector with 1’s in every place. These vectors have the property that:

〈ũi, ṽi〉 = 0

〈ũi, ṽj〉 ∈ {1, . . . ,m− 1} for i 6= j

Before continuing, let’s review the definition of the tensor product. Given a ∈ Fk, b ∈ F`, a⊗b ∈ Fk`
is the vector (. . . , aibj , . . .), which is to say the vector with aibj in the (i, j)th place. It follows from
the definition that 〈a⊗ b, c⊗ d〉 = 〈a, c〉〈b, d〉.

We now define ui = (ũi)
⊗(m−1) and vi = (ṽi)

⊗(m−1). The above property implies that

〈ui, vi〉 = 0

〈ui, vj〉 = 1 for i 6= j.

This construction gives us k =
(

`
m−1

)
and h = `m−1.

Now take m to be the product of two distinct primes: m = pq. Take ũi and ṽi as above, and let

ui =
(
A(ũi)

⊗(p−1), B(ũi)
⊗(q−1)

)
ui =

(
(ṽi)

⊗(p−1), (ṽi)
⊗(q−1)

)
.

Then, 〈ui, vj〉 = A〈ui, vj〉p−1 +B〈ui, vj〉q−1. Now choose A and B such that

A ≡ 0 (mod q), A ≡ 1 (mod p)
B ≡ 1 (mod q), B ≡ 0 (mod p)

,

which is possible by the Chinese Remainder Theorem.

Thus,

〈ui, vj〉 (mod p) =

{
0 〈ũi, ṽj〉 ≡ 0 (mod p)

1 otherwise

〈ui, vj〉 (mod q) =

{
0 〈ũi, ṽj〉 ≡ 0 (mod q)

1 otherwise

Therefore 〈ui, vj〉 takes one of four values mod n. However, 〈ui, vj〉 = 0 (mod m) is equivalent
to 〈ũi, ṽj〉 = 0 (mod p) and (mod q), which is turn is equivalent to 〈ũi, ṽj〉 = 0 (mod m), which
means i = j.

5

Finally, take p, q ≈
√
m. Then, we get parameters |S| = 3, h = `

√
m, and k =

(
`
m

)
. We may also

write h = 2
√

log k log `.

Generalizing to m being a product of more primes, we get locally decodable codes with larger
constant query complexity and reduced codeword length (as a function of the message length).

6

