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1 Definition of a Locally Decodable Code

Let C' C X" be a code with encoding map F : ¥*¥ — C. Then C is called a g, e-locally decodable
code if there exists an algorithm A such that for all messages z € £¥ and all r € " such that
A(r,E(z)) < €, we have

Pr(A(i,r) # z;) < 0.01,

for all 7 € [k], and moreover, A accesses only ¢ coordinates of r.

It is important here that the probability is only over the internal randomness of the algorithm A.
There is no randomness over i € [k]: the algorithm needs to work for all 1.

In general, we will be interested in achieving local decodability with query complexity ¢ = o(k). In
this lecture we will see subexponential

2 Recap: Reed-Muller Locally Decodable Codes

Reed-Muller codes turn out to be locally decodable with interesting parameters. This is the first
time we see Reed-Muller codes achieve something that we could not achieve with simply Reed-
Solomon codes.

Consider the Reed-Muller code of degree-d m-variate polynomials over F,. The choice of encoding
map turns out to be important here. Choose a set S C [Fj" which is an interpolating set for degree-d
m-variate polynomials over F,. This means that for any assignment u : S — [y, there is a unique
degree-d polynomial P(Xy,...,X,,) such that P|s = u (in particular we have that |S| = (d;m).
d+m
We will use S to specify the encoding map: given a message u € F(g " ), we view it as a function
u: S — Fg; The encoding of u is then the unique polynomial extension P.

Suppose we are given 7 : Fy — F,, with the promise that r is close to some polynomial P : Fy — F,
of degree less than or equal to d. The problem of local decoding is now the problem of recovering
P(z) for a given x € S (we will even be able to recover P(x) for arbitrary = € Fi*).

The main observation is that restricting a low-degree multivariate polynomial to a line gives a
low-degree univariate polynomial. This motivates the following algorithm.

e Pick a random line ¢ through .



e Query r on ¢\ {z}.
e We should see a univariate polynomial of degree less than or equal to d.

e Use this to deduce p(x).

2.1 Parameters: Constant Query

With ¢ queries, Reed-Muller codes have length:
1
k — n? (’“757Z )
There are known lower bounds:
e For ¢ = 2, we must have n = 2%k),

e For t > 2, we must have n > k1tO1/1),

It is an open question whether it is possible to have t = O(log k) and n = O(k).

2.2 Parameters: Constant rate
For m-variable Reed-Muller codes, we have:
k— m!.200m .

with rate R = % . 207%,”), and ¢t = kY™ queries. (We'll see another code that gives a better constant
rate later. .. )

2.3 State of the art

The best known constructions give:

O((log k)1/ logt
e For fixed t, we can have n = 22 ( )

e For fixed rate R, we can have t = 2VIogk,

In this lecture, we will see the first of these constructions. To motivate it, we will begin with a new
construction of a 2-query locally-decodable code.



3 Another Hadamard-like Locally Decodable Code

We will write F5 = {0, 1, —1}. Given a message ¢ € F%, consider

f:7Z5 — T3

k
fix— Zci . (—1)<x’ei>,
i=1

where ¢; is the ™" standard basis vector.

We use the following method to locally decode ¢;. Given r : Z’; — '3, pick z uniformly in ZS. Then
query r(z) ~ f(x) and r(z + €;) = f(x + e;), where by a ~ b, we mean a and b are “supposed to
be equal.” Consider

r(z +ej) —r(x) = f(x+ej) = f(z)

_ zkzci [(_1)<x+ej,ei> _ (_1)<r,ei>}
i=1

— cj(—1)<m’6j> ((_1)@1’@]') — 1)

= ¢;(=1)".

Therefore, we output (—1)% (r(xz +e;) — r(x)).

4 Matching Vector Codes

These amazing codes were constructed by Efremenko, based on an important breakthrough of
Yekhanin (see also the paper of Raghavendra, and the follow-up papers of Dvir-Gopalan-Yekhanin
and BenAroya-Efremenko-TaShma).

Let S C Z,,. Then we say a collection of vectors ui, v, us,vs, ..., ug, vp is S-matching if

(uj,vj) =0 fori=j
(uj,v;) € S for i # j.

As an aside, if S = Z,, \ {0}, m=2, how large can an S-matching collection be? One example
is with u; = (1,e;) = v;, where we have k = h — 1. Note that if we do a similar adjoining to a
S-matching collection, we get a set of orthogonal vectors, so this limits k¥ < h when m = 2.

Now, let uy, vy, us, va, ..., ug, vp be a matching vector family in ZF . Let F be some finite field with
m|(|F| — 1), and let w € F* be a primitive m™ root of unity in F. Define
i x> w®e)



For a message ¢ € F¥, define the codeword f : ZF — T by
k
fF=Ycixi
i=1

To locally decode (and recover c;), we first pick « € Z, uniformly at random. Then we query
r(x),r(z+v;),r(x+2v;),...,7(x+(m—1)v;), which “should be equal to” f(z), f(x+v;),..., f(z+
(m —1)v;). (Note that if m is a constant, then this is a constant query decoder.) Now,

h
flz+ Avj) = Z cixi(x + Avj)
i=1
= Cij(l‘ + /\Uj) + Z CZ'XZ‘(IL‘ + )\Uj)
i#]
The first term is equal to cjw<‘”’“j>
second term

, by the definition of y; and because (uj,v;) = 0. Then the

Y cixi(r + Avg) = Yl
i i#]
= Z Ciw<xvui>w)‘<vj’ui>
i#]

_ Z Z CiW(x,ui) w)\a

a€S \ (vj,ui)=a

_ Z Baw)\a’

where B,, is defined to be the inner sum for each «.

Thus, as a function of A,
fla+ j) = cjwl®u) 4 Z Bawe.
a€esS

In other words, to decode we just need to find the constant term. The procedure is then to recover
the coefficients By, {Ba}acs such that

fl@+Xy) = Bo+ > Baw™,
a€cs

which is solving an interpolation problem, where we need only query |S|+ 1 values of A. Then
output By - w ™ {@us)

4.1 Parameters of the Locally Decodable Code in terms of Parameters of the
Matching Vector Family

We have n = m”", k = k, and the number of queries is IS|+1<m



We are happy if S (or m) is constant, with k as large as possible; then we can handle ﬁw'
errors. This begs the question: how large a matching vector family can you construct with these
parameters?

4.2 Constructing a Matching Vector Family

We will first consider the case where m is prime, then later we will take m composite. For now,
consider the case where m is prime, S = {1}, and our vectors are in Z¢,. Take each u; to be a
vector with 1’s in exactly m — 1 places, and 0’s elsewhere, and v; to be the vector (with £ — (m —1)
1’s) such that u; + v; is the vector with 1’s in every place. These vectors have the property that:

(ui,v;) =0
<’lji,5j> S {1,...,m— 1} for 1 75]
Before continuing, let’s review the definition of the tensor product. Given a € F¥. b € F¢, a@b € F*

is the vector (...,a;bj,...), which is to say the vector with a;b; in the (4, j)'" place. It follows from
the definition that (a ® b,c ® d) = (a, c)(b, d).

We now define u; = (%)Y and v; = (2;)® Y. The above property implies that
<ui, Ui> 0
1 fori+j.

This construction gives us k = (me_l) and h = (M1,

<uivvj> =

Now take m to be the product of two distinct primes: m = pqg. Take u; and v; as above, and let
wi = (AG@) 200, B(@)*@ D)
wi = (@)D, (@)207V)

Then, (u;,v;) = Au;,v;)P~1 + B{u;, v;)7" 1. Now choose A and B such that

A=0 (modgq), A=1 (mod p)
B=1 (modgq), B=0 (modp)’
which is possible by the Chinese Remainder Theorem.

Thus,

0 (u;,v;) =0 (mod p)

1 otherwise

(ui,vj)  (mod p) = {

0 (u;,v;) =0 (mod q)

1 otherwise

<uivvj> (mod q) = {

Therefore (u;,v;) takes one of four values mod n. However, (u;,v;) = 0 (mod m) is equivalent
to (u;,v;) = 0 (mod p) and (mod ¢), which is turn is equivalent to (u;,v;) = 0 (mod m), which
means ¢ = j.



Finally, take p,q ~ \/m. Then, we get parameters |S| = 3, h = V™ and k = (Tfl) We may also
write h = 2Viogklogt,

Generalizing to m being a product of more primes, we get locally decodable codes with larger
constant query complexity and reduced codeword length (as a function of the message length).



