Now, to prove the bijectivity of ψ^* , we use the lemma to construct a map ψ^* : $\mathscr{C} \longrightarrow \mathbf{I}^*$. Consider the composed map $\varphi^*\psi^*$: $\mathscr{C} \longrightarrow \mathscr{C}$. It sends $H1 \longrightarrow H1$. We apply the lemma again, substituting \mathscr{C} for S. The uniqueness assertion of the lemma tells us that $\varphi^*\psi^*$ is the identity map. On the other hand, since the operation on \mathbf{I}^* is transitive and since ψ^* is compatible with the operations, ψ^* must be surjective. It follows that φ^* and ψ^* are bijective. \Box

The axiomatic method has many advantages over honest work.

Bertrand Russell

-

EXERCISES

1. The Operations of a Group on Itself

- **1.** Does the rule $g, x \xrightarrow{} xg^{-1}$ define an operation of G on itself?
- 2. Let H be a subgroup of a group G. Then H operates on G by left multiplication. Describe the orbits for this operation.
- 3. Prove the formula $|G| = |Z| + \sum |C|$, where the sum is over the conjugacy classes containing more than one element and where Z is the center of G.
- 4. Prove the Fixed Point Theorem (1.12).
- 5. Determine the conjugacy classes in the group M of motions of the plane.
- 6. Rule out as many of the following as possible as Class Equations for a group of order 10: 1+1+1+2+5, 1+2+2+5, 1+2+3+4, 1+1+2+2+2+2.
- 7. Let $F = \mathbb{F}_5$. Determine the order of the conjugacy class of $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ in $GL_2(\mathbb{F}_5)$.
- 8. Determine the Class Equation for each of the following groups.
 (a) the quaternion group, (b) the Klein four group, (c) the dihedral group D₅, (d) D₆, (e) D_n, (f) the group of upper triangular matrices in GL₂(F₃), (g) SL₂(F₃).
- 9. Let G be a group of order n, and let F be any field. Prove that G is isomorphic to a subgroup of $GL_n(F)$.
- 10. Determine the centralizer in $GL_3(\mathbb{R})$ of each matrix.

(a)
$$\begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$$
 (b) $\begin{bmatrix} 1 \\ 1 \\ -2 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 1 \\ -1 \\ -1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$
(e) $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$ (f) $\begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$

*11. Determine all finite groups which contain at most three conjugacy classes.

12. Let N be a normal subgroup of a group G. Suppose that |N| = 5 and that |G| is odd. Prove that N is contained in the center of G.

- *13. (a) Determine the possible Class Equations for groups of order 8.(b) Classify groups of order 8.
- 14. Let Z be the center of a group G. Prove that if G/Z is a cyclic group, then G is abelian and hence G = Z.
- *15. Let G be a group of order 35.
 - (a) Suppose that G operates nontrivially on a set of five elements. Prove that G has a normal subgroup of order 7.
 - (b) Prove that every group of order 35 is cyclic.

2. The Class Equation of the Icosahedral Group

- **1.** Identify the intersection $I \cap O$ when the dodecahedron and cube are as in Figure (2.7).
- 2. Two tetrahedra can be inscribed into a cube C, each one using half the vertices. Relate this to the inclusion $A_4 \subset S_4$.
- **3.** Does I contain a subgroup T? D_6 ? D_3 ?
- 4. Prove that the icosahedral group has no subgroup of order 30.
- 5. Prove or disprove: A_5 is the only proper normal subgroup of S_5 .
- 6. Prove that no group of order p^e , where p is prime and e > 1, is simple.
- 7. Prove or disprove: An abelian group is simple if and only if it has prime order.
- 8. (a) Determine the Class Equation for the group T of rotations of a tetrahedron.
 - (b) What is the center of T?
 - (c) Prove that T has exactly one subgroup of order 4.
 - (d) Prove that T has no subgroup of order 6.
- 9. (a) Determine the Class Equation for the octahedral group O.
 - (b) There are exactly two proper normal subgroups of O. Find them, show that they are normal, and show that there are no others.
- 10. Prove that the tetrahedral group T is isomorphic to the alternating group A_4 , and that the octahedral group O is isomorphic to the symmetric group S_4 . Begin by finding sets of four elements on which these groups operate.
- 11. Prove or disprove: The icosahedral group is not a subgroup of the group of real upper triangular 2×2 matrices.
- *12. Prove or disprove: A nonabelian simple group can not operate nontrivially on a set containing fewer than five elements.

3. Operations on Subsets

- 1. Let S be the set of subsets of order 2 of the dihedral group D_3 . Determine the orbits for the action of D_3 on S by conjugation.
- 2. Determine the orbits for left multiplication and for conjugation on the set of subsets of order 3 of D_3 .
- 3. List all subgroups of the dihedral group D_4 , and divide them into conjugacy classes.
- 4. Let H be a subgroup of a group G. Prove that the orbit of the left coset gH for the operation of conjugation contains the right coset Hg.
- 5. Let U be a subset of a finite group G, and suppose that |U| and |G| have no common factor. Is the stabilizer of |U| trivial for the operation of conjugation?
- 6. Consider the operation of left multiplication by G on the set of its subsets. Let U be a

230

Chapter 6 Exercises

subset whose orbit $\{gU\}$ partitions G. Let H be the unique subset in this orbit which contains 1. Prove that H is a subgroup of G and that the sets gU are its left cosets.

- 7. Let H be a subgroup of a group G. Prove or disprove: The normalizer N(H) is a normal subgroup of the group G.
- 8. Let $H \subset K \subset G$ be groups. Prove that H is normal in K if and only if $K \subset N(H)$.
- 9. Prove that the subgroup B of upper triangular matrices in $GL_n(\mathbb{R})$ is conjugate to the group L of lower triangular matrices.
- 10. Let B be the subgroup of $G = GL_n(\mathbb{C})$ of upper triangular matrices, and let $U \subset B$ be the set of upper triangular matrices with diagonal entries 1. Prove that B = N(U) and that B = N(B).
- *11. Let S_n denote the subgroup of $GL_n(\mathbb{R})$ of permutation matrices. Determine the normalizer of S_n in $GL_n(\mathbb{R})$.
- 12. Let S be a finite set on which a group G operates transitively, and let U be a subset of S. Prove that the subsets gU cover S evenly, that is, that every element of S is in the same number of sets gU.
- 13. (a) Let H be a normal subgroup of G of order 2. Prove that H is in the center of G.
 (b) Let H be a normal subgroup of prime order p in a finite group G. Suppose that p is the smallest prime dividing |G|. Prove that H is in the center Z(G).
- *14. Let H be a proper subgroup of a finite group G. Prove that the union of the conjugates of H is not the whole group G.
- 15. Let K be a normal subgroup of order 2 of a group G, and let $\overline{G} = G/K$. Let \overline{C} be a conjugacy class in \overline{G} . Let S be the inverse image of \overline{C} in G. Prove that one of the following two cases occurs.
 - (a) S = C is a single conjugacy class and $|C| = 2|\overline{C}|$.
 - (**b**) $S = C_1 \cup C_2$ is made up of two conjugacy classes and $|C_1| = |C_2| = |\overline{C}|$.
- 16. Calculate the double cosets HgH of the subgroup $H = \{1, y\}$ in the dihedral group D_n . Show that each double coset has either two or four elements.
- 17. Let H, K be subgroups of G, and let H' be a conjugate subgroup of H. Relate the double cosets H'gK and HgK.
- 18. What can you say about the order of a double coset HgK?

4. The Sylow Theorems

- 1. How many elements of order 5 are contained in a group of order 20?
- 2. Prove that no group of order pq, where p and q are prime, is simple.
- 3. Prove that no group of order p^2q , where p and q are prime, is simple.
- **4.** Prove that the set of matrices $\begin{bmatrix} 1 & a \\ c \end{bmatrix}$ where $a, c \in \mathbb{F}_7$ and c = 1, 2, 4 forms a group of the type process of a group arises.

the type presented in (4.9b) (and that therefore such a group exists).

- 5. Find Sylow 2-subgroups in the following cases: (a) D_{10} (b) T (c) O (d) I.
- **6.** Find a Sylow *p*-subgroup of $GL_2(\mathbb{F}_p)$.
- *7. (a) Let H be a subgroup of G of prime index p. What are the possible numbers of conjugate subgroups of H?
 - (b) Suppose that p is the smallest prime integer which divides |G|. Prove that H is a normal subgroup.

- *8. Let H be a Sylow p-su group of G, and let K = N(H). Prove or disprove: K = N(K).
- 9. Let G be a group of order $p^{e}m$. Prove that G contains a subgroup of order p^{r} for every integer $r \leq e$.
- 10. Let n = pm be an integer which is divisible exactly once by p, and let G be a group of order n. Let H be a Sylow p-subgroup of G, and let S be the set of all Sylow p-subgroups. How does S decompose into H-orbits?
- *11. (a) Compute the order of $GL_n(\mathbb{F}_p)$.
 - (b) Find a Sylow *p*-subgroup of $GL_n(\mathbb{F}_p)$.
 - (c) Compute the number of Sylow *p*-subgroups.
 - (\boldsymbol{d}) Use the Second Sylow Theorem to give another proof of the First Sylow Theorem.
- *12. Prove that no group of order 224 is simple.
- 13. Prove that if G has order $n = p^e a$ where $1 \le a < p$ and $e \ge 1$, then G has a proper normal subgroup.
- 14. Prove that the only simple groups of order < 60 are groups of prime order.
- 15. Classify groups of order 33.
- 16. Classify groups of order 18.
- 17. Prove that there are at most five isomorphism classes of groups of order 20.
- *18. Let G be a simple group of order 60.
 - (a) Prove that G contains six Sylow 5-subgroups, ten Sylow 3-subgroups, and five Sylow 2-subgroups.
 - (b) Prove that G is isomorphic to the alternating group A_5 .

5. The Groups of Order 12

- 1. Determine the Class Equations of the groups of order 12.
- 2. Prove that a group of order n = 2p, where p is prime, is either cyclic or dihedral.
- *3. Let G be a group of order 30.
 - (a) Prove that either the Sylow 5-subgroup K or the Sylow 3-subgroup H is normal.
 - (b) Prove that HK is a cyclic subgroup of G.
 - (c) Classify groups of order 30.
- 4. Let G be a group of order 55.
 - (a) Prove that G is generated by two elements x,y, with the relations $x^{11} = 1$, $y^5 = 1$, $yxy^{-1} = x^r$, for some r, $1 \le r < 11$.
 - (b) Prove that the following values of r are not possible: 2, 6, 7, 8, 10.
 - (c) Prove that the remaining values are possible, and that there are two isomorphism classes of groups of order 55.

6. Computation in the Symmetric Group

- 1. Verify the products (6.9).
- 2. Prove explicitly that the permutation (123)(45) is conjugate to (241)(35).
- 3. Let p, q be permutations. Prove that the products pq and qp have cycles of equal sizes.
- 4. (a) Does the symmetric group S_7 contain an element of order 5? of order 10? of order 15?
 - (b) What is the largest possible order of an element of S_7 ?

Chapter 6 Exercises

- 5. Show how to determine whether a permutation is odd or even when it is written as a product of cycles.
- 6. Prove or disprove: The order of a permutation is the least common multiple of the orders of the cycles which make it up.
- 7. Is the cyclic subgroup H of S_n generated by the cycle (12345) a normal subgroup?
- *8. Compute the number of permutations in S_n which do not leave any index fixed.
- 9. Determine the cycle decomposition of the permutation $i \leftrightarrow n-i$.
- 10. (a) Prove that every permutation p is a product of transpositions.
 - (b) How many transpositions are required to write the cycle $(123 \cdots n)$?
 - (c) Suppose that a permutation is written in two ways as a product of transpositions, say $p = \tau_1 \tau_2 \cdots \tau_m$ and $p = \tau_1' \tau_2' \cdots \tau_n'$. Prove that *m* and *n* are both odd or else they are both even.
- 11. What is the centralizer of the element (12) of S_4 ?
- 12. Find all subgroups of order 4 of the symmetric group S_4 . Which are normal?
- 13. Determine the Class Equation of A_4 .
- 14. (a) Determine the number of conjugacy classes and the Class Equation for S_5 .
 - (b) List the conjugacy classes in A_5 , and reconcile this list with the list of conjugacy classes in the icosahedral group [see (2.2)].
- 15. Prove that the transpositions $(12), (23), \dots, (n-1, n)$ generate the symmetric group S_n .
- 16. Prove that the symmetric group S_n is generated by the cycles $(12 \cdots n)$ and (12).
- 17. (a) Show that the product of two transpositions (ij)(kl) can always be written as a product of 3-cycles. Treat the case that some indices are equal too.
 (b) Prove that the alternating group A_n is generated by 3-cycles, if n ≥ 3.
- 18. Prove that if a proper normal subgroup of S_n contains a 3-cycle, it is A_n .
- *19. Prove that A_n is simple for all $n \ge 5$.
- *20. Prove that A_n is the only subgroup of S_n of index 2.
- 21. Explain the miraculous coincidence at the end of the section in terms of the opposite group (Chapter 2, Section 1, exercise 12).

7. The Free Group

- 1. Prove or disprove: The free group on two generators is isomorphic to the product of two infinite cyclic groups.
- 2. (a) Let F be the free group on x, y. Prove that the two elements $u = x^2$ and $v = y^3$ generate a subgroup of F which is isomorphic to the free group on u, v.
 - (b) Prove that the three elements $u = x^2$, $v = y^2$, and z = xy generate a subgroup isomorphic to the free group on u, v, z.
- **3.** We may define a *closed word* in S' to be the oriented loop obtained by joining the ends of a word. Thus

represents a closed word, if we read it clockwise. Establish a bijective correspondence between reduced closed words and conjugacy classes in the free group.

4. Let p be a prime integer. Let N be the number of words of length p in a finite set S. Show that N is divisible by p.

8. Generators and Relations

- 1. Prove that two elements a, b of a group generate the same subgroup as bab^2 , bab^3 .
- 2. Prove that the smallest normal subgroup of a group G containing a subset S is generated as a subgroup by the set $\{gsg^{-1} \mid g \in G, s \in S\}$.
- 3. Prove or disprove: y^2x^2 is in the normal subgroup generated by xy and its conjugates.
- 4. Prove that the group generated by x, y, z with the single relation $yxyz^{-2} = 1$ is actually a free group.
- 5. Let S be a set of elements of a group G, and let $\{r_i\}$ be some relations which hold among the elements S in G. Let F be the free group on S. Prove that the map $F \longrightarrow G$ (8.1) factors through F/N, where N is the normal subgroup generated by $\{r_i\}$.
- 6. Let G be a group with a normal subgroup N. Assume that G and G/N are both cyclic groups. Prove that G can be generated by two elements.
- 7. A subgroup H of a group G is called *characteristic* if it is carried to itself by all automorphisms of G.
 - (a) Prove that every characteristic subgroup is normal.
 - (b) Prove that the center Z of a group G is a characteristic subgroup.
 - (c) Prove that the subgroup H generated by all elements of G of order n is characteristic.
- 8. Determine the normal subgroups and the characteristic subgroups of the quaternion group.
- **9.** The commutator subgroup C of a group G is the smallest subgroup containing all commutators.
 - (a) Prove that the commutator subgroup is a characteristic subgroup.
 - (b) Prove that G/C is an abelian group.
- 10. Determine the commutator subgroup of the group M of motions of the plane.
- 11. Prove by explicit computation that the commutator $x(yz)x^{-1}(yz)^{-1}$ is in the normal subgroup generated by the two commutators $xyx^{-1}y^{-1}$ and $xzx^{-1}z^{-1}$ and their conjugates.
- 12. Let G denote the free abelian group $\langle x, y; xyx^{-1}y^{-1} \rangle$ defined in (8.8). Prove the universal property of this group: If u, v are elements of an abelian group A, there is a unique homomorphism $\varphi: G \longrightarrow A$ such that $\varphi(x) = u, \varphi(y) = v$.
- 13. Prove that the normal subgroup in the free group $\langle x, y \rangle$ which is generated by the single commutator $xyx^{-1}y^{-1}$ is the commutator subgroup.
- 14. Let N be a normal subgroup of a group G. Prove that G/N is abelian if and only if N contains the commutator subgroup of G.
- **15.** Let $\varphi: G \longrightarrow G'$ be a surjective group homomorphism. Let S be a subset of G such that $\varphi(S)$ generates G', and let T be a set of generators of ker φ . Prove that $S \cup T$ generates G.
- 16. Prove or disprove: Every finite group G can be presented by a finite set of generators and a finite set of relations.
- 17. Let G be the group generated by x, y, z, with certain relations {r_i}. Suppose that one of the relations has the form wx, where w is a word in y, z. Let r_i' be the relation obtained by substituting w⁻¹ for x into r_i, and let G' be the group generated by y, z, with relations {r_i'}. Prove that G and G' are isomorphic.

234

Chapter 6 Exercises

9. The Todd–Coxeter Algorithm

- 1. Prove that the elements x, y of (9.5) generate T, and that the permutations (9.7) generate A_{4} .
- 2. Use the Todd-Coxeter Algorithm to identify the group generated by two elements x, y, with the following relations.

(a) $x^2 = y^2 = 1$, xyx = yxy

(b) $x^2 = y^3 = 1$, xyx = yxy

(c) $x^3 = y^3 = 1$, xyx = yxy

- (d) $x^4 = y^2 = 1$, xyx = yxy
- (e) $x^4 = y^4 = x^2y^2 = 1$
- 3. Use the Todd–Coxeter Algorithm to determine the order of the group generated by x, y, with the following relations.

(a) $x^4 = 1$, $y^3 = 1$, $xy = y^2x$ (b) $x^7 = 1$, $y^3 = 1$, $yx = x^2y$.

- 4. Identify the group G generated by elements x, y, z, with relations $x^4 = y^4 = z^3 = x^2 z^2 = 1$ and z = xy.
- 5. Analyze the group G generated by x, y, with relations $x^4 = 1$, $y^4 = 1$, $x^2 = y^2$, $xy = y^3x$.
- *6. Analyze the group generated by elements x, y, with relations $x^{-1}yx = y^{-1}$, $y^{-1}xy = x^{-1}$.
- 7. Let G be the group generated by elements x, y, with relations x⁴ = 1, y³ = 1, x² = yxy. Prove that this group is trivial in these two ways.
 (a) using the Todd-Coxeter Algorithm
 - (b) working directly with the relations
- 8. Identify the group G generated by two elements x, y, with relations $x^3 = y^3 = yxyxy = 1$.
- **9.** Let $p \le q \le r$ be integers >1. The *triangle group* G^{pqr} is defined by generators $G^{pqr} = \langle x, y, z; x^p, y^q, z^r, xyz \rangle$. In each case, prove that the triangle group is isomorphic to the group listed.
 - (a) the dihedral group D_n , when p, q, r = 2, 2, n
 - (b) the tetrahedral group, when p, q, r = 2, 3, 3
 - (c) the octahedral group, when p, q, r = 2, 3, 4
 - (d) the icosahedral group, when p, q, r = 2, 3, 5
- 10. Let Δ denote an isosceles right triangle, and let a, b, c denote the reflections of the plane about the three sides of Δ . Let x = ab, y = bc, z = ca. Prove that x, y, z generate a triangle group.
- 11. (a) Prove that the group G generated by elements x, y, z with relations $x^2 = y^3 = z^5 = 1$, xyz = 1 has order 60.
 - (b) Let H be the subgroup generated by x and zyz^{-1} . Determine the permutation representation of G on G/H, and identify H.
 - (c) Prove that G is isomorphic to the alternating group A_5 .
 - (d) Let K be the subgroup of G generated by x and yxz. Determine the permutation representation of G on G/K, and identify K.

Miscellaneous Problems

1. (a) Prove that the subgroup T' of O_3 of all symmetries of a regular tetrahedron, including orientation-reversing symmetries, has order 24.

- (b) Is T' isomorphic to the symmetric group S_4 ?
- (c) State and prove analogous results for the group of symmetries of a dodecahedron.
- 2. (a) Let U = {1, x} be a subset of order 2 of a group G. Consider the graph having one vertex for each element of G and an edge joining the vertices g to gx for all g ∈ G. Prove that the vertices connected to the vertex 1 are the elements of the cyclic group generated by x.
 - (b) Do the analogous thing for the set $U = \{1, x, y\}$.
- *3. (a) Suppose that a group G operates transitively on a set S, and that H is the stabilizer of an element $s_0 \in S$. Consider the action of G on $S \times S$ defined by $g(s_1, s_2) = (gs_1, gs_2)$. Establish a bijective correspondence between double cosets of H in G and G-orbits in $S \times S$.
 - (b) Work out the correspondence explicitly for the case that G is the dihedral group D_5 and S is the set of vertices of a 5-gon.
 - (c) Work it out for the case that G = T and that S is the set of edges of a tetrahedron.
- *4. Assume that $H \subset K \subset G$ are subgroups, that H is normal in K, and that K is normal in G. Prove or disprove: H is normal in G.
- *5. Prove the Bruhat decomposition, which asserts that $GL_n(\mathbb{R})$ is the union of the double cosets BPB, where B is the group of upper triangular matrices and P is a permutation matrix.
- 6. (a) Prove that the group generated by x, y with relations x², y² is an infinite group in two ways:
 - (i) It is clear that every word can be reduced by using these relations to the form $\cdots xyxy \cdots$. Prove that every element of G is represented by exactly one such word.
 - (ii) Exhibit G as the group generated by reflections r, r' about lines ℓ, ℓ' whose angle of intersection is not a rational multiple of 2π .
 - (b) Let N be any proper normal subgroup of G. Prove that G/N is a dihedral group.
- 7. Let H, N be subgroups of a group G, and assume that N is a normal subgroup.
 - (a) Determine the kernels of the restrictions of the canonical homomorphism $\pi: G \longrightarrow G/N$ to the subgroups H and HN.
 - (b) Apply the First Isomorphism Theorem to these restrictions to prove the Second Isomorphism Theorem: $H/(H \cap N)$ is isomorphic to (HN)/N.
- 8. Let H, N be normal subgroups of a group G such that $H \supset N$, and let $\overline{H} = H/N$, $\overline{G} = G/N$.
 - (a) Prove that \overline{H} is a normal subgroup of \overline{G} .
 - (b) Use the composed homomorphism $G \longrightarrow \overline{G} \longrightarrow \overline{G}/\overline{H}$ to prove the *Third Isomorphism Theorem:* G/H is isomorphic to $\overline{G}/\overline{H}$.

236