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such groups as symmetry. We imagine the crystal to be infinitely large. Then the fact
that the molecules are arranged regularly implies that they form an array having
three independent translational symmetries. It has been shown that there are 230
types of crystallographic groups, analogous to the 17 lattice groups (4.15). This is
too long a list to be very useful, and so crystals have been classified more crudely
into seven crystal systems. For more about this, and for a discussion of the 32 crys-
tallographic point groups, look in a book on crystallography.

Un bon héritage vaut mieux que le plus joli probléme de géométrie,
parce qu'il tient lieu de méthode générale,
et sert a resoudre bien des problémes.

Gottfried Wilhelm Leibnitz

EXERCISES

1. Symmetry of Plane Figures

[y

. Prove that the set of symmetries of a figure F in the plane forms a group.
List all symmetries of (a) a square and (b) a regular pentagon.
. List all symmetries of the following figures.

(@ (1.4) () (1.5 (0 (1.6) (@) (1.7
4. Let G be a finite group of rotations of the plane about the origin. Prove that G is cyclic.

w

N

The Group of Motions of the Plane

. Compute the fixed point of z,pe algebraically.

Verify the rules (2.5) by explicit calculation, using the definitions (2.3).

Prove that O is not a normal subgroup of M.

Let m be an orientation-reversing motion. Prove that m? is a translation.

Let SM denote the subset of orientation-preserving motions of the plane. Prove that SM
is a normal subgroup of M, and determine its index in M.

6. Prove that a linear operator on R? is a reflection if and only if its eigenvalues are 1 and
-1, and its eigenvectors are orthogonal.

7. Prove that a conjugate of a reflection or a glide reflection is a motion of the same type,
and that if m is a glide reflection then the glide vectors of m and of its conjugates have
the same length.

8. Complete the proof that (2.13) is a homomorphism.

9. Prove that the map M—— {1, r} defined by tapermn1, tapngM»r.is a homomor-
phism.

10. Compute the effect of rotation of the axes through an angle 7 on the expressions z,pg and
tapor for a motion.

RN
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11.

12.
13.

14.

15.

(a) Compute the eigenvalues and eigenvectors of the linear operator m = per.

(b) Prove algebraically that m is a reflection about a line through the origin, which sub-
tends an angle of 10 with the x-axis.

(¢) Do the same thing as in (b) geometrically.

Compute the glide vector of the glide z;per in terms of a and 6.

(a) Let m be a glide reflection along a line €. Prove geometrically that a point x lies on €
if and only if x, m(x), m*(x) are colinear.

(b) Conversely, prove that if m is an orientation-reversing motion and x is a point such
that x, m(x), m*(x) are distinct points on a line £, then m is a glide reflection
along ¢.

Find an isomorphism from the group SM to the subgroup of GL,(C) of matrices of the

form [a b] with |a| = 1.

0o 1y
(a) Write the formulas for the motions (2.3) in terms of the complex variable
z=x+ iy.
(b) Show that every motion has the form m(z) = az + B or m(z) = az + 3, where
|| = 1 and B is an arbitrary complex number.

3. Finite Groups of Motions

1.

Let D, denote the dihedral group (3.6). Express the product x*yx~'y~Ix%? in the form
x'y/ in D,.

. List all subgroups of the group Ds, and determine which are normal.
. Find all proper normal subgroups and identify the quotient groups of the groups D;; and

D15.

. (a) Compute the cosets of the subgroup H = {1, x°} in the dihedral group D1 explicitly.

(b) Prove that Dy, /H is isomorphic to Ds.
(¢) Is Dy isomorphic to Ds X H?

. List the subgroups of G = Ds which do not contain N = {1, x*}.
. Prove that every finite subgroup of M is a conjugate subgroup of one of the standard sub-

groups listed in Corollary (3.5).

4. Discrete Groups of Motions

1.

2.

Prove that a discrete group G consisting of rotations about the origin is cyclic and is gen-
erated by ps where 8 is the smallest angle of rotation in G.

Let G be a subgroup of M which contains rotations about two different points. Prove al-
gebraically that G contains a translation.

. Let (a, b) be a lattice basis of a lattice L in R2. Prove that every other lattice basis has the

form (a’,b’) = (a, b)P, where P is a 2 X 2 integer matrix whose determinant is *1.

. Determine the point group for each of the patterns depicted in Figure (4.16).
. (a) Let B be a square of side length a, and let € > 0. Let S be a subset of B such that the

distance between any two points of S is = €. Find an explicit upper bound for the
number of elements in S.
(b) Do the same thing for a box B in R”,
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13.
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. Prove that the subgroup of R* generated by 1 and V2 is dense in R*.
. Prove that every discrete subgroup of O is finite.
. Let G be a discrete subgroup of M. Prove that there is a point p, in the plane which is not

fixed by any point of G except the identity.

. Prove that the group of symmetries of the frieze pattern

.. .CLeeeeeeeee. ..

is isomorphic to the direct product C> X C., of a cyclic group of order 2 and an infinite

cyclic group.

Let G be the group of symmetries of the frieze pattern . . . HebhESAS A

(a) Determine the point group G of G.

(b) For each element g € G, and each element g € G which represents g, describe the
action of g geometrically.

(c) Let H be the subgroup of translations in G. Determine [G:H].

Let G be the group of symmetries of the pattern

SSSSSSSSSSSSSSSS 2S2SPSISPSISIsis
LLLLLLLLKLRLRR .8k, SE3C3838383838>¢
S222222222222222 K2 282828282828
LLLLLKLLKLRRRLR ... PO IOIOICI®I®I®O L
222323222222 222222 3833338 3E3eSs
LLELEKLLLLKRRR KL 38383838383 83<¢3¢
S2232222222222222 CICICICI®IOI®I®
LLLLLLLLLR R kgkke 3383838383838 >3¢
233222232 22222222 38383838383 E3es
SSSEE288888EEEes SE0eoeneoesenSse
LLLLLLLLLLLLLLLL SIS I3I33L

Determine the point group of G.

Let G be the group of symmetries of an equilateral triangular lattice L. Find the index in
G of the subgroup T N G.

Let G be a discrete group in which every element is orientation-preserving. Prove that
the point group G is a cyclic group of rotations and that there is a point p in the plane
such that the set of group elements which fix p is isomorphic to G.

With each of the patterns shown, find a pattern with the same type of symmetry in
(4.16).
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15. Let N denote the group of rigid motions of the line £ = R!. Some elements of N are

*16.

tgo—>x+a, a€R, s:x—>—x.

(a) Show that {t,, t;5} are all of the elements of N, and describe their actions on ¢
geometrically.

(b) Compute the products t4p, sta, S5.

(c¢) Find all discrete subgroups of N which contain a translation. It will be convenient to
choose your origin and unit length with reference to the particular subgroup. Prove
that your list is complete.

Let N’ be the group of motions of an infinite ribbon
R={(,y|-1=y =<1}
It can be viewed as a subgroup of the group M. The following elements are in N ':
ta: (6, y)—>(x + a,y)
st (%, y)—>(~x,y)
ri (e, y)—>(x, -y)
p: (x,y)—>(=x, ~y).

(a) Show that these elements generate N ', and describe the elements of N " as products.

(b) State and prove analogues of (2.5) for these motions.

(c) A frieze pattern is any pattern on the ribbon which is periodic and not degenerate, in
the sense that its group of symmetries is discrete. Since it is periodic, its group of
symmetries will contain a translation. Some sample patterns are depicted in the text
(1.3, 1.4, 1.6, 1.7). Classify the symmetry groups which arise, identifying those
which differ only in the choice of origin and unit length on the ribbon. I suggest that
you begin by trying to make patterns with different kinds of symmetry. Please make
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*17.

18.

*19.

*20.

21.

22.

*23.

a careful case analysis when proving your results. A suitable format would be as fol-
lows: Let G be a discrete subgroup containing a translation.

Case 1. Every element of G is a translation. Then . ..,

Case 2: G contains the rotation p but no orientation-reversing symmetry. Then ...,
and so on.

Let L be a lattice of R?, and let a, b be linearly independent vectors lying in L. Show that

the subgroup L' = {ma + nb | m,n € Z} of L generated by a, b has finite index, and

that the index is the number of lattice points in the parallelogram whose vertices are
0,a,b,a + b and which are not on the “far edges” [a,a + b] and [b,a + b]. (So, 0 is

included, and so are points which lie on the edges [0, a], [0, b], except for the points a, b

themselves. )

(a) Find a subset F of the plane which is not fixed by any motion m € M.

(b) Let G be a discrete group of motions. Prove that the union S of all images of F by
elements of G is a subset whose group of symmetries G’ contains G.

(¢) Show by an example that G’ may be larger than G.

*(d) Prove that there exists a subset F such that G’ = G.

Let G be a lattice group such that no element g # 1 fixes any point of the plane. Prove

that G is generated by two translations, or else by one translation and one glide.

Let G be a lattice group whose point group is D; = {1, r}.

(a) Show that the glide lines and the lines of reflection of G are all parallel.

(b) Let L = L. Show that L contains nonzero vectors a = (a1, 0)', b = (0, by)".

(c) Let g and b denote the smallest vectors of the type indicated in (b). Then either (a, b)
or (a, c) is a lattice basis for L, where ¢ = 3(a + b).

(d) Show that if coordinates in the plane are chosen so that the x—axis is a glide line,
then G contains one of the elements g = r or g = t1or. In either case, show that
G=LULg.

(e) There are four possibilities described by the dichotomies (c) and (d). Show that there
are only three different kinds of group.

Prove that if the point group of a lattice group G is Cs, then L = L is an equilateral tri-

angular lattice, and G is the group of all rotational symmetries of L about the origin.

Prove that if the point group of a lattice group G is Ds, then L = Lg is an equilateral tri-

angular lattice, and G is the group of all symmetries of L.

Prove that symmetry groups of the figures in Figure (4.16) exhaust the possibilities.

5. Abstract Symmetry: Group Operations

1.

2.
3.

4.

Determine the group of automorphisms of the following groups.
(a) C4 (b) C(, (C) Cy X Cz
Prove that (5.4) is an equivalence relation.

Let S be a set on which G operates. Prove that the relation s ~ s’ if s’ = gs for some
g € G is an equivalence relation.

Let ¢: G— G’ be a homomorphism, and let S be a set on which G’ operates. Show
how to define an operation of G on S, using the homomorphism .
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5. Let G = Dy be the dihedral group of symmetries of the square.

*7.

10.

11.

12.

(a) What is the stabilizer of a vertex? an edge?
(b) G acts on the set of two elements consisting of the diagonal lines. What is the stabi-
lizer of a diagonal?

. In each of the figures in exercise 14 of Section 4, find the points which have nontrivial

stabilizers, and identify the stabilizers.

Let G be a discrete subgroup of M.

(a) Prove that the stabilizer G, of a point p is finite.

(b) Prove that the orbit O, of a point p is a discrete set, that is, that there is a number
€ > 0 so that the distance between two distinct points of the orbit is at least €.

(c¢) Let B, B’ be two bounded regions in the plane. Prove that there are only finitely
many elements g € G so that gB M B’ is nonempty.

. Let G = GL,(R) operate on the set § = R”" by left multiplication.

(a) Describe the decomposition of S into orbits for this operation.
(b) What is the stabilizer of e;?

Decompose the set C**? of 2 X 2 complex matrices for the following operations of
GLAC):
(a) Left multiplication

*(b) Conjugation

(a) Let S = R™>" be the set of real m X n matrices, and let G = GL,(R) X GL,(R).
Prove that the rule (P, ),A ~> PAQ™! defines an operation of G on S.

(b) Describe the decomposition of S into G-orbits.

(c) Assume that m = n. What is the stabilizer of the matrix [/ |0]?

(a) Describe the orbit and the stabilizer of the matrix 10 under conjugation in
GL.(R) 0 2

(b) Interpreting the matrix in GL,(F3), find the order (the number of elements) of the
orbit.

(a) Define automorphism of a field.

(b) Prove that the field Q) of rational numbers has no automorphism except the identity.
(¢) Determine Aut F, when F = Q[V2].

6. The Operation on Cosets

1.

What is the stabilizer of the coset aH for the operation of G on G/H?

2. Let G be a group, and let H be the cyclic subgroup generated by an element x of G.

Show that if left multiplication by x fixes every coset of H in G, then H is a normal

subgroup.

(a) Exhibit the bijective map (6.4) explicitly, when G is the dihedral group D, and S is
the set of vertices of a square.

(b) Do the same for D,, and the vertices of a regular n—gon.

. (a) Describe the stabilizer H of the index 1 for the action of the symmetric group G = S,

on {1,...,n} explicitly.
(b) Describe the cosets of H in G explicitly for this action.
(c) Describe the map (6.4) explicitly.
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5. Describe all ways in which S; can operate on a set of four elements.

6. Prove Proposition (6.5).

7. A map S—— S’ of G-sets is called a homomorphism of G- sets if ¢(gs) = go(s) for all
s € Sand g € G. Let ¢ be such a homomorphism. Prove the following:
(a) The stabilizer Gy(s) contains the stabilizer Gs;.
(b) The orbit of an element s € S maps onto the orbit of ¢ (s).

7. The Counting Formula

1. Use the counting formula to determine the orders of the group of rotational symmetries
of a cube and of the group of rotational symmetries of a tetrahedron.

2. Let G be the group of rotational symmetries of a cube C. Two regular tetrahedra A, A’
can be inscribed in C, each using half of the vertices. What is the order of the stabilizer
of A?

3. Compute the order of the group of symmetries of a dodecahedron, when orientation-
reversing symmetries such as reflections in planes, as well as rotations, are allowed. Do
the same for the symmetries of a cube and of a tetrahedron.

4. Let G be the group of rotational symmetries of a cube, let S., Sy, Sf be the sets of ver-
tices, edges, and faces of the cube, and let Hy, He, Hr be the stabilizers of a vertex, an
edge, and a face. Determine the formulas which represent the decomposition of each of
the three sets into orbits for each of the subgroups.

5. Let G D H D K be groups. Prove the formula [G : K] = [G : H] H : K] without the
assumption that G is finite.

6. (a) Prove that if H and K are subgroups of finite index of a group G, then the intersec-

tion H N K is also of finite index.
(b) Show by example that the index [H : H N K] need not divide [G : K].

8. Permutation Representations

1. Determine all ways in which the tetrahedral group T (see (9.1)) can operate on a set of
two elements.

2. Let S be a set on which a group G operates, and let H = {g € G|gs = sforalls € S}.
Prove that H is a normal subgroup of G.

3. Let G be the dihedral group of symmetries of a square. Is the action of G on the vertices
a faithful action? on the diagonals?

4. Suppose that there are two orbits for the operation of a group G on a set S, and that they
have orders m, n respectively. Use the operation to define a homomorphism from G to
the product Sy, X S, of symmetric groups.

5. A group G operates faithfully on a set S of five elements, and there are two orbits, one of
order 3 and one of order 2. What are the possibilities for G?

6. Complete the proof of Proposition (8.2).

7. Let F = [F5. There are four one-dimensional subspaces of the space of column vectors
F2. Describe them. Left multiplication by an invertible matrix permutes these subspaces.
Prove that this operation defines a homomorphism ¢: GL(F})——> S,. Determine the
kernel and image of this homomorphism.
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*8.

For each of the following groups, find the smallest integer n such that the group has a
faithful operation on a set with n elements.
(a) the quaternion group H (b) D, (¢) D¢

9. Finite Subgroups of the Rotation Group

1.

2.

*8.

*9,

Describe the orbits of poles for the group of rotations of an octahedron and of an
icosahedron.

Identify the group of symmetries of a baseball, taking the stitching into account and al-
lowing orientation-reversing symmetries.

. Let O be the group of rotations of a cube. Determine the stabilizer of a diagonal line

connecting opposite vertices.

. Let G = O be the group of rotations of a cube, and let H be the subgroup carrying one

of the two inscribed tetrahedra to itself (see exercise 2, Section 7). Prove that H = T.

. Prove that the icosahedral group has a subgroup of order 10.
. Determine all subgroups of the following groups:

@7T b/

. Explain why the groups of symmetries of the cube and octahedron, and of the dodecahe-

dron and icosahedron, are equal.

(a) The 12 points (*1, =a,0), (0, =1, za){(*a,0, 1) form the vertices of a regular
icosahedron if « is suitably chosen. Verify this, and determine «.

(b) Determine the matrix of the rotation through the angle 27r /5 about the origin in R2.

(c) Determine the matrix of the rotation of R* through the angle 27 /5 about the axis
containing the point (1, ¢, 0).

Prove the crystallographic restriction for three-dimensional crystallographic groups: A

rotational symmetry of a crystal has order 2, 3, 4, or 6.

Miscellaneous Problems

1.

2.

*4,

Describe completely the following groups:

(a) Aut D, (b) Aut H, where H is the quaternion group

(a) Prove that the set Aut G of automorphisms of a group G forms a group.

(b) Prove that the map ¢: G— Aut G defined by g~ (conjugation by g) is a homo-
morphism, and determine its kernel.

(c) The automorphisms which are conjugation by a group element are called inner auto-
morphisms. Prove that the set of inner automorphisms, the image of ¢, is a normal
subgroup of Aut G.

Determine the quotient group Aut H/Int H for the quaternion group H.

Let G be a lattice group. A fundamental domain D for G is a bounded region in the

plane, bounded by piecewise smooth curves, such that the sets gD, g € G cover the

plane without overlapping except along the edges. We assume that D has finitely many
connected components.

(a) Find fundamental domains for the symmetry groups of the patterns illustrated in ex-
ercise 14 of Section 4.

(b) Show that any two fundamental domains D, D’ for G can be cut into finitely many
congruent pieces of the form gD N D’ or D N gD’ (see exercise 7, Section 5).
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(¢) Conclude that D and D' have the same area. (It may happen that the boundary
curves intersect infinitely often, and this raises some questions about the definition of
area. Disregard such points in your answer.)

*5, Let G be a lattice group, and let p, be a point in the plane which is not fixed by any ele-
ment of G. Let S = {gpo | g € G} be the orbit of p,. The plane can be divided into
polygons, each one containing a single point of S, as follows: The polygon A, containing
p is the set of points ¢ whose distance from p is the smallest distance to any point of S

A, = {qg € R?| dist(q, p) = dist(g, p') forallp’ € S}.

(a) Prove that A, is a polygon.
(b) Prove that A, is a fundamental domain for G.
(c) Show that this method works for all discrete subgroups of M, except that the domain
A, which is constructed need not be a bounded set.
(d) Prove that A, is bounded if and only if the group is a lattice group.
*6. (a) Let G' C G be two lattice groups. Let D be a fundamental domain for G. Show that
a fundamental domain D' for G' can be constructed out of finitely many translates
gD of D.
(b) Show that [G : G'] < » and that [G : G'] = area (D ")/area (D).
(¢) Compute the index [G : Lg] for each of the patterns {4.16).
*7. Let G be a finite group operating on a finite set S. For each element g € G, let S denote
the subset of elements of S fixed by g: §¢ = {s € S| gs = s}.
(a) We may imagine a true—false table for the assertion that gs = s, say with rows in-
dexed by elements of G and columns indexed by elements. Construct such a table for
the action of the dihedral group D; on the vertices of a triangle.

(b) Prove the formula >, |G| = > |$%].
SES gEG

(¢) Prove Burnside’s Formula:

|G| - (number of orbits) = 2, | $|.
gEG

8. There are 70 = (i) ways to color the edges of an octagon, making four black and four

white. The group Ds operates on this set of 70, and the orbits represent equivalent color-
ings. Use Burnside’s Formula to count the number of equivalence classes.

9. Let G be a group of order n which operates nontrivially on a set of order r. Prove that if
n > r!, then G has a proper normal subgroup.



