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map @ which sends the coset @ = aN to ¢ (a):

@a) = ¢la).

This is our fundamental method of identifying quotient groups. For example, the ab-
solute value map C*—— R™ maps the nonzero complex numbers to the positive
real numbers, and its kernel is the unit circle U. So the quotient group C*/U is iso-
morphic to the multiplicative group of positive real numbers. Or, the determinant is
a surjective homomorphism GL,(R)—— R, whose kernel is the special linear
group SLA.(R). So the quotient GL,(R)/SL.(R) is isomorphic to R*.

Proof of the First Isomorphism Theorem. According to Proposition (5.13), the
nonempty fibres of ¢ are the cosets aN. So we can think of G in either way, as the
set of cosets or as the set of nonempty fibres of ¢. Therefore the map we are looking
for is the one defined in (5.10) for any map of sets. It maps G bijectively onto the
image of ¢, which is equal to G' because ¢ is surjective. By construction it is com-
patible with multiplication: @(ab) = ¢ (ab) = ¢(a)p(b) = B@)e(b). o

&8 giebt alfo febr viel verfdyiedene Avten von Srien,

melde fidy nicht wobl berzeblen lagen;

und daber entfteben die verjchicdene Theile ver Matbematic,

veren eine jegliche mit einer befonvern Avt von Brdgen befdhdftiget ift.

Leonhard Euler
EXERCISES

1. The Definition of a Group

1. (a) Verify (1.17) and (1.18) by explicit computation.
(b) Make a multiplication table for 5.

2. (a) Prove that GL,(R) is a group.
(b) Prove that S,, is a group.

3. Let S be a set with an associative law of composition and with an identity element.
Prove that the subset of S consisting of invertible elements is a group.

4. Solve for y, given that xyz~'w = | in a group.
5. Assume that the equation xyz = 1 holds in a group G. Does it follow that yzx = 1? That
yxz = 1?7

6. Write out all ways in which one can form a product of four elements a,b,c,d in the
given order.
. Let S be any set. Prove that the law of composition defined by ab = a is associative.
. Give an example of 2 X 2 matrices such that A™'B # BA™'.
Show that if ab = a in a group, then b = 1, and ifab = 1, then b = a™".
10. Let a, b be elements of a group G. Show that the equation ax = b has a unique solution
in G.
11. Let G be a group, with multiplicative notation. We define an opposite group G° with law
of composition a ° b as follows: The underlying set is the same as G, but the law of com-
position is the opposite; that is, we define a o b = ba. Prove that this defines a group.
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Subgroups

. Determine the elements of the cyclic group generated by the matrix [_i (l)] explicitly.

. Let a, b be elements of a group G. Assume that ¢ has order 5 and that a®b = ba>. Prove

that ab = ba.

. Which of the following are subgroups?

(a) GL.(R) C GL,(C).

) {1,-1} C R*.

(¢) The set of positive integers in Z™.
(d) The set of positive reals in R*,

(¢) The set of all matrices | ¢ 0], with @ # 0, in GL,(R).

00

. Prove that a nonempty subset H of a group G is a subgroup if for all x,y € H the ele-

ment xy~! is also in H.

An nth root of unity is a complex number z such that z” = 1. Prove that the nth roots of
unity form a cyclic subgroup of C* of order n.

. (a) Find generators and relations analogous to (2.13) for the Klein four group.

(b) Find all subgroups of the Klein four group.

Let a and b be integers.
(a) Prove that the subset aZ + bZ is a subgroup of Z*.
(b) Prove that @ and b + 7a generate the subgroup aZ + bZ.

Make a multiplication table for the quaternion group H.

. Let H be the subgroup generated by two elements a,b of a group G. Prove that if

ab = ba, then H is an abelian group.

(a) Assume that an element x of a group has order rs. Find the order of x”.

(b) Assuming that x has arbitrary order n, what is the order of x"?

Prove that in any group the orders of ab and of ba are equal.

Describe all groups G which contain no proper subgroup.

Prove that every subgroup of a cyclic group is cyclic.

Let G be a cyclic group of order n, and let r be an integer dividing n. Prove that G con-

tains exactly one subgroup of order r.

(a) In the definition of subgroup, the identity element in H is required to be the identity
of G. One might require only that A have an identity element, not that it is the same
as the identity in G. Show that if H has an identity at all, then it is the identity in G,
so this definition would be equivalent to the one given.

(b) Show the analogous thing for inverses.

(a) Let G be a cyclic group of order 6. How many of its elements generate G?

(b) Answer the same question for cyclic groups of order 5, 8, and 10.

(c) How many elements of a cyclic group of order n are generators for that group?

Prove that a group in which every element except the identity has order 2 is abelian.

According to Chapter 1 (2.18), the elementary matrices generate GL,, (R).

(a) Prove that the elementary matrices of the first and third types suffice to generate this
group.

(b) The special linear group SLn(R) is the set of real n X n matrices whose determinant
is 1. Show that SL,(R) is a subgroup of GL.(R).
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*(¢) Use row reduction to prove that the elementary matrices of the first type generate
SL,(R). Do the 2 X 2 case first.
19. Determine the number of elements of order 2 in the symmetric group Ss.
20. (a) Let a,b be elements of an abelian group of orders m, n respectively. What -can you
say about the order of their product ab?
*(b) Show by example that the product of elements of finite order in a nonabelian group
need not have finite order.
21. Prove that the set of elements of finite order in an abelian group is a subgroup.
22. Prove that the greatest common divisor of a and b, as defined in the text, can be obtained
by factoring @ and b into primes and collecting the common factors.

3. Isomorphisms

1. Prove that the additive group R* of real numbers is isomorphic to the multiplicative
group P of positive reals.

2. Prove that the products ab and ba are conjugate elements in a group.

3. Leta, b be elements of a group G, and let a’ = bab™'. Prove that a = a’ if and only if a
and b commute.

4. (a) Let ' = aba’'. Prove that b'* = ab"a™".
(b) Prove that if aba™ = b2, then a’ba™® = b8,

5. Let ¢: G—— G’ be an isomorphism of groups. Prove that the inverse function ¢! is
also an isomorphism.

6. Let ¢: G—> G’ be an isomorphism of groups, let x,y € G, and let x’ = @(x) and
y' =)
(a) Prove that the orders of x and of x’ are equal.
(b) Prove that if xyx = yxy, thenx'y'x’ = y'x'y".
(¢) Prove that ¢ (x!) = x'7\.

1 |
that they are not conjugate when regarded as elements of SL,(R).

7. Prove that the matrices [1 1], [1 l] are conjugate elements in the group GL,(R) but

8. Prove that the matrices [1 2], [1 ;] are conjugate in GL,(R).

9. Find an isomorphism from a group G to its opposite group G° (Section 2, exercise 12).
10. Prove that the map A~ (4')"! is an automorphism of GL,(R).
11. Prove that the set Aut G of automorphisms of a group G forms a group, the law of com-
position being composition of functions.
12, Let G be a group, and let ¢: G—> G be the map ¢ (x) = x 1.
(a) Prove that ¢ is bijective.
(b) Prove that ¢ is an automorphism if and only if G is abelian.
13. (a) Let G be a group of order 4. Prove that every element of G has order 1, 2, or 4.
(b) Classify groups of order 4 by considering the following two cases:
(i) G contains an element of order 4.
(ii) Every element of G has order < 4.
14. Determine the group of automorphisms of the following groups.
(a) Z*, (b) a cyclic group of order 10, (c) Ss.
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Show that the functions f = 1/x, g = (x — 1)/x generate a group of functions, the law
of composition being composition of functions, which is isomorphic to the symmetric
group S;.

Give an example of two isomorphic groups such that there is more than one isomorphism
between them.

4. Homomorphisms

1.

10.

11.

12.

13.

14.
15.

16.

17.

Let G be a group, with law of composition written x # y. Let H be a group with law of
composition # ° v. What is the condition for a map ¢: G—> H' to be a homomor-
phism?

. Let ¢: G——>G' be a group homomorphism. Prove that for any elements ai,..., ax of

G, @lar-ar) = @lar) " @lar).

. Prove that the kernel and image of a homomorphism are subgroups.
. Describe all homomorphisms ¢: Z*—— Z*, and determine which are injective, which

are surjective, and which are isomorphisms.

. Let G be an abelian group. Prove that the nth power map ¢: G——>G defined by

¢(x) = x” is a homomorphism from G to itself.

. Let £ Rt ——C* be the map f(x) = e™. Prove that f is a homomorphism, and deter-
mine its kernel and image. 4
. Prove that the absolute value map | |: C*—— R sending e~ |a | is a homomor-

phism, and determine its kernel and image.

. (a) Find all subgroups of $3, and determine which are normal.

(b) Find all subgroups of the quaternion group, and determine which are normal.

. (a) Prove that the composition ¢ o ¢ of two homomorphisms ¢, ¢ is 2 homomorphism.

(b) Describe the kernel of ¢ © .

Let ¢: G——>G' be a group homomorphism. Prove that ¢ (x) = ¢@(y) if and only if
xy! € ker o.

Let G, H be cyclic groups, generated by elements x, y. Determine the condition on the
orders m, n of x and y so that the map sending x!~w>y’ is a group homomorphism.

. g] with 4 € GL,(R)

and D € GL,—(R) form a subgroup P of GL,(R), and that the map P—> GL,(R) send-
ing M a4 is a homomorphism. What is its kernel?

(a) Let H be a subgroup of G, and let g € G. The conjugate subgroup gHg™ ' is defined
to be the set of all conjugates ghg™', where h € H. Prove that gHg™! is a subgroup of
G.

{(b) Prove that a subgroup H of a group G is normal if and only if gHg! = H for all
g €6.

Let N be a normal subgroup of G, and let g € G, n € N. Prove that g''ng € N.

Let ¢ and ¢ be two homomorphisms from a group G to another group G’', and let

H C G be the subset {x € G| ¢(x) = ¥ (x)}. Prove or disprove: H is a subgroup of G.

Let ¢: G—> G’ be a group homomorphism, and let x € G be an element of order r.

What can you say about the order of ¢ (x)?

Prove that the center of a group is a normal subgroup.

Prove that the n X n matrices M which have the block form [A
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18. Prove that the center of GL,(R) is the subgroup Z = {c1 | ¢ € R, ¢ # 0}.

19. Prove that if a group contains exactly one element of order 2, then that element is in the
center of the group.

20. Consider the set U of real 3 X 3 matrices of the form

1 * =

* .

(a) Prove that U is a subgroup of SL,(R).
(b) Prove or disprove: U is normal.
*(¢) Determine the center of U.

21. Prove by giving an explicit example that GL,(R) is not a normal subgroup of GL,(C).
22. Let ¢: G—>G' be a surjective homomorphism.

(a) Assume that G is cyclic. Prove that G' is cyclic.

(b) Assume that G is abelian. Prove that G’ is abelian.
23. Let ¢: G—> G’ be a surjective homomorphism, and let N be a normal subgroup of G.

Prove that ¢ (N) is a normal subgroup of G'.

5. Equivalence Relations and Partitions

1. Prove that the nonempty fibres of a map form a partition of the domain.

2. Let S be a set of groups. Prove that the relation G ~ H if G is isomorphic to H is an
equivalence relation on §.

3. Determine the number of equivalence relations on a set of five elements.

4. Is the intersection R N R’ of two equivalence relations R, R’ C § X § an equivalence re-
lation? Is the union?

5. Let H be a subgroup of a group G. Prove that the relation defined by the rule @ ~ b if
bla € H is an equivalence relation on G.

6. (a) Prove that the relation x conjugate to y in a group G is an equivalence relation on G.
(b) Describe the elements @ whose conjugacy class (= equivalence class) consists of the

element a alone.

7. Let R be a relation on the set R of real numbers. We may view R as a subset of the (x, y)-
plane. Explain the geometric meaning of the reflexive and symmetric properties.

8. With each of the following subsets R of the (x, y)-plane, determine which of the axioms
(5.2) are satisfied and whether or not R is an equivalence relation on the set R of real
numbers.

(@ R ={s9]s €RL

(b) R = empty set.

(¢) R = locus {y = 0}.

(d) R = locus {xy + 1 = 0}.

(© R = locus {x*y — xy> — x + y = O}
() R =locus {x* — xy + 2x — 2y = O}.

9, Describe the smallest equivalence relation on the set of real numbers which contains the
line x — y = 1 in the (x, y)-plane, and sketch it.

10. Draw the fibres of the map from the (x,z)-plane to the y-aXis defined by the map y = zx.
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. Work out rules, obtained from the rules on the integers, for addition and multiplication
on the set (5.8).
. Prove that the cosets (5.14) are the fibres of the map ¢.

Cosets

. Determine the index [Z : nZ].

. Prove directly that distinct cosets do not overlap.

. Prove that every group whose order is a power of a prime p contains an element of order
D-

. Give an example showing that left cosets and right cosets of GL:(R) in GL,(C) are not
always equal.

. Let H,K be subgroups of a group G of orders 3,5 respectively. Prove that
H NK={1}

. Justify (6.15) carefully.

. (a) Let G be an abelian group of odd order. Prove that the map ¢: G— G defined by

¢ (x) = x?is an automorphism.

(b) Generalize the result of (a).

. Let W be the additive subgroup of R™ of solutions of a system of homogeneous linear
equations AX = 0. Show that the solutions of an inhomogeneous system AX = B form a
coset of W.

. Let H be a subgroup of a group G. Prove that the number of left cosets is equal to the
number of right cosets (a) if G is finite and (b) in general.

(a) Prove that every subgroup of index 2 is normal.

(b) Give an example of a subgroup of index 3 which is not normal.

Classify groups of order 6 by analyzing the following three cases.

(a) G contains an element of order 6.

(b) G contains an element of order 3 but none of order 6.

(c) All elements of G have order 1 or 2.

Let G, H be the following subgroups of GL,(R):

o

An element of G can be represented by a point in the (x, y)-plane. Draw the partitions of
the plane into left and into right cosets of H.

Restriction of a Homomorphism to a Subgroup

Let G and G' be finite groups whose orders have no common factor. Prove that the only
homomorphism ¢: G——> G’ is the trivial one ¢ (x) = 1 for all x.

2. Give an example of a permutation of even order which is odd and an example of one

which is even.

3. (a) Let H and K be subgroups of a group G. Prove that the intersection xH N yK of two

cosets of H and X is either empty or else is a coset of the subgroup H N K.
(b) Prove that if H and K have finite index in G then H N K also has finite index.
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. Prove Proposition (7.1).
. Let H, N be subgroups of a group G, with N normal. Prove that HN = NH and that this

set is a subgroup.

. Let ¢: G——> G’ be a group homomorphism with kernel K, and let H be another sub-

group of G. Describe ¢ (¢ (H)) in terms of H and K.

. Prove that 2 group of order 30 can have at most 7 subgroups of order 5.
*8.

Prove the Correspondence Theorem: Let ¢: G——> G’ be a surjective group homomor-
phism with kernel N. The set of subgroups H' of G' is in bijective correspondence with
the set of subgroups H of G which contain N, the correspondence being defined by the
maps H~> @(H) and ¢ '(H') <~ H'. Moreover, normal subgroups of G correspond
to normal subgroups of G'.

. Let G and G' be cyclic groups of orders 12 and 6 generated by elements x,y re-

spectively, and let ¢: G—> G’ be the map defined by ¢ (x’) = y’. Exhibit the corre-
spondence referred to the previous problem explicitly.

8. Products of Groups

N

=)

10.

11.

. Let G, G’ be groups. What is the order of the product group G X G'?
. Is the symmetric group S; a direct product of nontrivial groups?
. Prove that a finite cyclic group of order rs is isomorphic to the product of cyclic groups

of orders r and s if and only if r and s have no common factor.

. In each of the following cases, determine whether or not G is isomorphic to the product

of H and K.

(a) G = R*, H = {=1}, K = {positive real numbers}.

(b) G = {invertible upper triangular 2 X 2 matrices}, H = {invertible diagonal ma-
trices}, K = {upper triangular matrices with diagonal entries 1}.

(¢0 G = C* and H = {unit circle}, K = {positive reals}.

. Prove that the product of two infinite cyclic groups is not infinite cyclic.
. Prove that the center of the product of two groups is the product of their centers.
. (a) Let H,K be subgroups of a group G. Show that the set of products

HK ={hk|h € H, k € K} is a subgroup if and only if HK = KH.
(b) Give an example of a group G and two subgroups H, K such that HK is not a sub-

group.

. Let G be a group containing normal subgroups of orders 3 and 5 respectively. Prove that

G contains an element of order 15.

. Let G be a finite group whose order is a product of two integers: n = ab. Let H, K be

subgroups of G of orders @ and b respectively. Assume that H N K = {1}. Prove that

HK = G. Is G isomorphic to the product group H X K?

Let x € G have order m, and let y € G’ have order n. What is the order of (x,y) in

GxG"

Let H be a subgroup of a group G, and let ¢: G—> H be a homomorphism whose re-

striction to H is the identity map: ¢(h) = h, if h € H. Let N = ker o.

(a) Prove that if G is abelian then it is isomorphic to the product group H X N.

(b) Find a bijective map G— H x N without the assumption that G is abelian, but
show by an example that G need not be isomorphic to the product group.
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9. Modular Arithmetic

1.

Compute (7 + 14)(3 — 16) modulo 17.

2. (a) Prove that the square a” of an integer a is congruent to 0 or 1 modulo 4.

10

10.

11.

(b) What are the possible values of @*> modulo 8?

. (a) Prove that 2 has no inverse modulo 6.

(b) Determine ail integers n such that 2 has an inverse modulo 7.
Prove that every integer a is congruent to the sum of its decimal digits modulo 9.

. Solve the congruence 2x = 5 (a) modulo 9 and (b) modulo 6.
. Determine the integers n for which the congruences x + y = 2, 2x — 3y = 3 (modulo

n) have a solution.

. Prove the associative and commutative laws for multiplication in Z/nZ.
. Use Proposition (2.6) to prove the Chinese Remainder Theorem: Let m,n,a, b be in-

tegers, and assume that the greatest common divisor of m and n is 1. Then there is an
integer x such that x = a (modulo m) and x = b (modulo r).

Quotient Groups

Let G be the group of invertible real upper triangular 2 X 2 matrices. Determine whether
or not the following conditions describe normal subgroups H of G. If they do, use the
First Isomorphism Theorem to identify the quotient group G/H.

(aay=1 (bya,=20 (C) an = ap @a, =ap=1

. Write out the proof of (10.1) in terms of elements,
. Let P be a partition of a group G with the property that for any pair of elements A, B of

the partition, the product set AB is contained entirely within another element C of the
partition. Let N be the element of P which contains 1. Prove that N is a normal subgroup
of G and that P is the set of its cosets.

. (a) Consider the presentation (1.17) of the symmetric group S;. Let H be the subgroup

{1, y}. Compute the product sets (1H)(xH) and (1H)(x*H), and verify that they are
not cosets.

(b) Show that a cyclic group of order 6 has two generators satisfying the rules x* = 1,
y2 =1, yx = xy.

(c) Repeat the computation of (a), replacing the relations (1.18) by the relations given in
part (b). Explain.

. Identify the quotient group R*/P, where P denotes the subgroup of positive real num-

bers.

. Let H = {=1, %i} be the subgroup of G = C* of fourth roots of unity. Describe the

cosets of H in G explicitly, and prove that G/H is isomorphic to G.

. Find all normal subgroups N of the quaternion group H, and identify the quotients H/N.
. Prove that the subset H of G = GLA(R) of matrices whose determinant is positive forms

a normal subgroup, and describe the quotient group G/H.

. Prove that the subset G X 1 of the product group G X G’ is a normal subgroup isomor-

phic to G and that (G X G')}/(G X 1) is isomorphic to G'.

Describe the quotient groups C*/P and C*/U, where U is the subgroup of complex
numbers of absolute value 1 and P denotes the positive reals.

Prove that the groups R*/Z* and R* /27 7+ are isomorphic.
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Miscellaneous Problems

W N =

*5.

*7.

*8.

*9,

10.

11.

*]2.

. What is the product of all mth roots of unity in C?

. Compute the group of automorphisms of the quaternion group.

. Prove that a group of even order contains an element of order 2.

. Let K CH CG be subgroups of a finite group G. Prove the formula

[G: K] =[G: H]H: K]

A semigroup S is a set with an associative law of composition and with an identity. But
elements are not required to have inverses, so the cancellation law need not hold. The
semigroup S is said to be generated by an element s if the set {1, s, s%,...} of nonnegative
powers of s is the whole set S. For example, the relations s> = 1 and s? = s describe two
different semigroup structures on the set {1, s}. Define isomorphism of semigroups, and
describe all isomorphism classes of semigroups having a generator.

. Let S be a semigroup with finitely many elements which satisfies the Cancellation Law

(1.12). Prove that S is a group.

Let a = (ai,...,ax) and b = (by,..., bx) be points in k-dimensional space R¥. A path

from a to b is a continuous function on the interval [0, 1] with values in R¥, that is, a

function f: [0, 1]—> RX, sending tawwf(t) = (x1(r),...,xx(t)), such that f(0) = a and

F(1) = b. If S is a subset of R* and if a, b € S, we define a ~ b if a and b can be joined

by a path lying entirely in S.

(2) Show that this is an equivalence relation on S. Be careful to check that the paths you
construct stay within the set S.

(b) A subset S of R* is called path connected if a ~ b for any two points a,b € S.
Show that every subset S is partitioned into path-connected subsets with the property
that two points in different subsets can not be connected by a path in S.

(¢) Which of the following loci in R? are path-connected? {x? + y? = 1}, {xy = 0},
{xy = 1}.

The set of n X n matrices can be identified with the space R"*". Let G be a subgroup of

GL,(R). Prove each of the following.

(2) If A,B,C,D € G, and if there are paths in G from A to B and from C to D, then there
is a path in G from AC to BD.

(b) The set of matrices which can be joined to the identity / forms a normal subgroup of
G (called the connected component of G).

(a) Using the fact that SL,(R) is generated by elementary matrices of the first type (see
exercise 18, Section 2), prove that this group is path-connected.

(b) Show that GL,(R) is a union of two path-connected subsets, and describe them.

Let H, K be subgroups of a group G, and let g € G. The set
HgK = {x € G| x = hgkfor some h € H,k € K}

is called a double coset.

(a) Prove that the double cosets partition G.

(b) Do all double cosets have the same order?

Let H be a subgroup of a group G. Show that the double cosets HgH are the left cosets
gH if H is normal, but that if H is not normal then there is a double coset which properly
contains a left coset.

Prove that the double cosets in GL,(R) of the subgroups H = {lower triangular matrices}
and K = {upper triangular matrices} are the sets HPK, where P is a permutation matrix.



