Chapter 2 Exercises

map $\overline{\varphi}$ which sends the coset $\overline{a} = aN$ to $\varphi(a)$:

$$\overline{\varphi}(\overline{a}) = \varphi(a).$$

This is our fundamental method of identifying quotient groups. For example, the absolute value map $\mathbb{C}^{\times} \longrightarrow \mathbb{R}^{\times}$ maps the nonzero complex numbers to the positive real numbers, and its kernel is the unit circle U. So the quotient group \mathbb{C}^{\times}/U is isomorphic to the multiplicative group of positive real numbers. Or, the determinant is a surjective homomorphism $GL_n(\mathbb{R}) \longrightarrow \mathbb{R}^{\times}$, whose kernel is the special linear group $SL_n(\mathbb{R})$. So the quotient $GL_n(\mathbb{R})/SL_n(\mathbb{R})$ is isomorphic to \mathbb{R}^{\times} .

Proof of the First Isomorphism Theorem. According to Proposition (5.13), the nonempty fibres of φ are the cosets aN. So we can think of \overline{G} in either way, as the set of cosets or as the set of nonempty fibres of φ . Therefore the map we are looking for is the one defined in (5.10) for any map of sets. It maps \overline{G} bijectively onto the image of φ , which is equal to \underline{G}' because φ is surjective. By construction it is compatible with multiplication: $\overline{\varphi}(ab) = \varphi(ab) = \varphi(a)\varphi(b) = \overline{\varphi}(\overline{a})\overline{\varphi}(\overline{b})$.

Es giebt also sehr viel verschiedene Urten von Brößen, welche sich nicht wohl herzehlen laßen; und daher entstehen die verschiedene Theile der Mathematic, deren eine jegliche mit einer besondern Urt von Brößen beschäftiget ist.

Leonhard Euler

EXERCISES

1. The Definition of a Group

- (a) Verify (1.17) and (1.18) by explicit computation.
 (b) Make a multiplication table for S₃.
- 2. (a) Prove that GL_n(ℝ) is a group.
 (b) Prove that S_n is a group.
- **3.** Let S be a set with an associative law of composition and with an identity element. Prove that the subset of S consisting of invertible elements is a group.
- 4. Solve for y, given that $xyz^{-1}w = 1$ in a group.
- 5. Assume that the equation xyz = 1 holds in a group G. Does it follow that yzx = 1? That yxz = 1?
- 6. Write out all ways in which one can form a product of four elements a, b, c, d in the given order.
- 7. Let S be any set. Prove that the law of composition defined by ab = a is associative.
- 8. Give an example of 2×2 matrices such that $A^{-1}B \neq BA^{-1}$.
- 9. Show that if ab = a in a group, then b = 1, and if ab = 1, then $b = a^{-1}$.
- 10. Let a, b be elements of a group G. Show that the equation ax = b has a unique solution in G.
- 11. Let G be a group, with multiplicative notation. We define an opposite group G^0 with law of composition $a \circ b$ as follows: The underlying set is the same as G, but the law of composition is the opposite; that is, we define $a \circ b = ba$. Prove that this defines a group.

2. Subgroups

- 1. Determine the elements of the cyclic group generated by the matrix $\begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}$ explicitly.
- 2. Let a, b be elements of a group G. Assume that a has order 5 and that $a^{3}b = ba^{3}$. Prove that ab = ba.
- 3. Which of the following are subgroups?
 (a) GL_n(ℝ) ⊂ GL_n(ℂ).
 - **(b)** $\{1, -1\} \subset \mathbb{R}^{\times}$.
 - (c) The set of positive integers in \mathbb{Z}^+ .
 - (d) The set of positive reals in \mathbb{R}^{\times} .
 - (e) The set of all matrices $\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}$, with $a \neq 0$, in $GL_2(\mathbb{R})$.
- **4.** Prove that a nonempty subset H of a group G is a subgroup if for all $x, y \in H$ the element xy^{-1} is also in H.
- 5. An *n*th root of unity is a complex number z such that $z^n = 1$. Prove that the *n*th roots of unity form a cyclic subgroup of \mathbb{C}^{\times} of order n.
- 6. (a) Find generators and relations analogous to (2.13) for the Klein four group.(b) Find all subgroups of the Klein four group.
- 7. Let a and b be integers.
 (a) Prove that the subset aZ + bZ is a subgroup of Z⁺.
 (b) Prove that a and b + 7a generate the subgroup aZ + bZ.
- 8. Make a multiplication table for the quaternion group H.
- 9. Let H be the subgroup generated by two elements a,b of a group G. Prove that if ab = ba, then H is an abelian group.
- 10. (a) Assume that an element x of a group has order rs. Find the order of x^r.
 (b) Assuming that x has arbitrary order n, what is the order of x^r?
- 11. Prove that in any group the orders of *ab* and of *ba* are equal.
- 12. Describe all groups G which contain no proper subgroup.
- 13. Prove that every subgroup of a cyclic group is cyclic.
- 14. Let G be a cyclic group of order n, and let r be an integer dividing n. Prove that G contains exactly one subgroup of order r.
- 15. (a) In the definition of subgroup, the identity element in H is required to be the identity of G. One might require only that H have an identity element, not that it is the same as the identity in G. Show that if H has an identity at all, then it is the identity in G, so this definition would be equivalent to the one given.
 - (b) Show the analogous thing for inverses.
- 16. (a) Let G be a cyclic group of order 6. How many of its elements generate G?(b) Answer the same question for cyclic groups of order 5, 8, and 10.
 - (c) How many elements of a cyclic group of order n are generators for that group?
- 17. Prove that a group in which every element except the identity has order 2 is abelian.
- 18. According to Chapter 1 (2.18), the elementary matrices generate $GL_n(\mathbb{R})$.
 - (a) Prove that the elementary matrices of the first and third types suffice to generate this group.
 - (b) The special linear group $SL_n(\mathbb{R})$ is the set of real $n \times n$ matrices whose determinant is 1. Show that $SL_n(\mathbb{R})$ is a subgroup of $GL_n(\mathbb{R})$.

70

Chapter 2 Exercises

- *(c) Use row reduction to prove that the elementary matrices of the first type generate $SL_n(\mathbb{R})$. Do the 2 × 2 case first.
- 19. Determine the number of elements of order 2 in the symmetric group S_4 .
- 20. (a) Let a, b be elements of an abelian group of orders m, n respectively. What can you say about the order of their product ab?
 - *(b) Show by example that the product of elements of finite order in a nonabelian group need not have finite order.
- 21. Prove that the set of elements of finite order in an abelian group is a subgroup.
- 22. Prove that the greatest common divisor of a and b, as defined in the text, can be obtained by factoring a and b into primes and collecting the common factors.

3. Isomorphisms

- 1. Prove that the additive group \mathbb{R}^+ of real numbers is isomorphic to the multiplicative group P of positive reals.
- 2. Prove that the products ab and ba are conjugate elements in a group.
- 3. Let a, b be elements of a group G, and let $a' = bab^{-1}$. Prove that a = a' if and only if a and b commute.
- 4. (a) Let $b' = aba^{-1}$. Prove that $b'^n = ab^n a^{-1}$. (b) Prove that if $aba^{-1} = b^2$, then $a^3ba^{-3} = b^8$.
- 5. Let $\varphi: G \longrightarrow G'$ be an isomorphism of groups. Prove that the inverse function φ^{-1} is also an isomorphism.
- 6. Let $\varphi: G \longrightarrow G'$ be an isomorphism of groups, let $x, y \in G$, and let $x' = \varphi(x)$ and $y' = \varphi(y)$.
 - (a) Prove that the orders of x and of x' are equal.
 - (b) Prove that if xyx = yxy, then x'y'x' = y'x'y'.
 - (c) Prove that $\varphi(x^{-1}) = x^{\prime 1}$.
- 7. Prove that the matrices $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 \\ 1 & 1 \end{bmatrix}$ are conjugate elements in the group $GL_2(\mathbb{R})$ but that they are not conjugate when regarded as elements of $SL_2(\mathbb{R})$.
- 8. Prove that the matrices $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$, $\begin{bmatrix} 1 & 3 \\ 2 \end{bmatrix}$ are conjugate in $GL_2(\mathbb{R})$.
- 9. Find an isomorphism from a group G to its opposite group G^0 (Section 2, exercise 12).
- **10.** Prove that the map $A \xrightarrow{(A^t)^{-1}}$ is an automorphism of $GL_n(\mathbb{R})$.
- 11. Prove that the set Aut G of automorphisms of a group G forms a group, the law of composition being composition of functions.
- 12. Let G be a group, and let φ: G→→G be the map φ(x) = x⁻¹.
 (a) Prove that φ is bijective.
 - (b) Prove that φ is an automorphism if and only if G is abelian.
- 13. (a) Let G be a group of order 4. Prove that every element of G has order 1, 2, or 4.
 - (b) Classify groups of order 4 by considering the following two cases:
 - (i) G contains an element of order 4.
 - (ii) Every element of G has order < 4.
- 14. Determine the group of automorphisms of the following groups.
 (a) Z⁺, (b) a cyclic group of order 10, (c) S₃.

- 15. Show that the functions f = 1/x, g = (x 1)/x generate a group of functions, the law of composition being composition of functions, which is isomorphic to the symmetric group S_3 .
- 16. Give an example of two isomorphic groups such that there is more than one isomorphism between them.

4. Homomorphisms

- 1. Let G be a group, with law of composition written x # y. Let H be a group with law of composition $u \circ v$. What is the condition for a map $\varphi: G \longrightarrow H'$ to be a homomorphism?
- 2. Let $\varphi: G \longrightarrow G'$ be a group homomorphism. Prove that for any elements a_1, \ldots, a_k of $G, \varphi(a_1 \cdots a_k) = \varphi(a_1) \cdots \varphi(a_k)$.
- 3. Prove that the kernel and image of a homomorphism are subgroups.
- Describe all homomorphisms φ: Z⁺→Z⁺, and determine which are injective, which are surjective, and which are isomorphisms.
- 5. Let G be an abelian group. Prove that the *n*th power map $\varphi: G \longrightarrow G$ defined by $\varphi(x) = x^n$ is a homomorphism from G to itself.
- 6. Let $f: \mathbb{R}^+ \longrightarrow \mathbb{C}^{\times}$ be the map $f(x) = e^{ix}$. Prove that f is a homomorphism, and determine its kernel and image.
- Prove that the absolute value map | : C[×]→ R[×] sending α → |α| is a homomorphism, and determine its kernel and image.
- 8. (a) Find all subgroups of S₃, and determine which are normal.
 (b) Find all subgroups of the quaternion group, and determine which are normal.
- 9. (a) Prove that the composition φ ∘ ψ of two homomorphisms φ, ψ is a homomorphism.
 (b) Describe the kernel of φ ∘ ψ.
- 10. Let $\varphi: G \longrightarrow G'$ be a group homomorphism. Prove that $\varphi(x) = \varphi(y)$ if and only if $xy^{-1} \in \ker \varphi$.
- 11. Let G, H be cyclic groups, generated by elements x, y. Determine the condition on the orders m, n of x and y so that the map sending $x^i \xrightarrow{} y^i$ is a group homomorphism.
- 12. Prove that the $n \times n$ matrices M which have the block form $\begin{bmatrix} A & B \\ 0 & D \end{bmatrix}$ with $A \in GL_r(\mathbb{R})$ and $D \in GL_{n-r}(\mathbb{R})$ form a subgroup P of $GL_n(\mathbb{R})$, and that the map $P \longrightarrow GL_r(\mathbb{R})$ sending $M \longrightarrow A$ is a homomorphism. What is its kernel?
- 13. (a) Let H be a subgroup of G, and let $g \in G$. The conjugate subgroup gHg^{-1} is defined to be the set of all conjugates ghg^{-1} , where $h \in H$. Prove that gHg^{-1} is a subgroup of G.
 - (b) Prove that a subgroup H of a group G is normal if and only if $gHg^{-1} = H$ for all $g \in G$.
- 14. Let N be a normal subgroup of G, and let $g \in G$, $n \in N$. Prove that $g^{-1}ng \in N$.
- 15. Let φ and ψ be two homomorphisms from a group G to another group G', and let $H \subset G$ be the subset $\{x \in G \mid \varphi(x) = \psi(x)\}$. Prove or disprove: H is a subgroup of G.
- 16. Let $\varphi: G \longrightarrow G'$ be a group homomorphism, and let $x \in G$ be an element of order r. What can you say about the order of $\varphi(x)$?
- 17. Prove that the center of a group is a normal subgroup.

Exercises Chapter 2

- 18. Prove that the center of $GL_n(\mathbb{R})$ is the subgroup $Z = \{c \mid c \in \mathbb{R}, c \neq 0\}$.
- 19. Prove that if a group contains exactly one element of order 2, then that element is in the center of the group.
- 20. Consider the set U of real 3×3 matrices of the form

$$\begin{bmatrix} 1 & * & * \\ & 1 & * \\ & & & 1 \end{bmatrix}$$
.

- (a) Prove that U is a subgroup of $SL_n(\mathbb{R})$.
- (b) Prove or disprove: U is normal.
- *(c) Determine the center of U.
- **21.** Prove by giving an explicit example that $GL_2(\mathbb{R})$ is not a normal subgroup of $GL_2(\mathbb{C})$.
- 22. Let $\varphi: G \longrightarrow G'$ be a surjective homomorphism.
 - (a) Assume that G is cyclic. Prove that G' is cyclic.
 - (b) Assume that G is abelian. Prove that G' is abelian.
- 23. Let $\varphi: G \longrightarrow G'$ be a surjective homomorphism, and let N be a normal subgroup of G. Prove that $\varphi(N)$ is a normal subgroup of G'.

5. Equivalence Relations and Partitions

- 1. Prove that the nonempty fibres of a map form a partition of the domain.
- 2. Let S be a set of groups. Prove that the relation $G \sim H$ if G is isomorphic to H is an equivalence relation on S.
- 3. Determine the number of equivalence relations on a set of five elements.
- 4. Is the intersection $R \cap R'$ of two equivalence relations $R, R' \subset S \times S$ an equivalence relation? Is the union?
- 5. Let H be a subgroup of a group G. Prove that the relation defined by the rule $a \sim b$ if $b^{-1}a \in H$ is an equivalence relation on G.
- 6. (a) Prove that the relation x conjugate to y in a group G is an equivalence relation on G. (b) Describe the elements a whose conjugacy class (= equivalence class) consists of the element *a* alone.
- 7. Let R be a relation on the set \mathbb{R} of real numbers. We may view R as a subset of the (x, y)plane. Explain the geometric meaning of the reflexive and symmetric properties.
- 8. With each of the following subsets R of the (x, y)-plane, determine which of the axioms (5.2) are satisfied and whether or not R is an equivalence relation on the set \mathbb{R} of real numbers.
 - (a) $R = \{(s,s) \mid s \in \mathbb{R}\}.$
 - (b) R = empty set.
 - (c) $R = locus \{ y = 0 \}.$
 - (d) $R = locus \{xy + 1 = 0\}.$

 - (e) $R = \text{locus } \{x^2y xy^2 x + y = 0\}.$ (f) $R = \text{locus } \{x^2 xy + 2x 2y = 0\}.$
- 9. Describe the smallest equivalence relation on the set of real numbers which contains the line x - y = 1 in the (x, y)-plane, and sketch it.
- 10. Draw the fibres of the map from the (x,z)-plane to the y-axis defined by the map y = zx.

- 11. Work out rules, obtained from the rules on the integers, for addition and multiplication on the set (5.8).
- 12. Prove that the cosets (5.14) are the fibres of the map φ .

6. Cosets

- 1. Determine the index $[\mathbb{Z} : n\mathbb{Z}]$.
- 2. Prove directly that distinct cosets do not overlap.
- 3. Prove that every group whose order is a power of a prime p contains an element of order p.
- 4. Give an example showing that left cosets and right cosets of $GL_2(\mathbb{R})$ in $GL_2(\mathbb{C})$ are not always equal.
- 5. Let H, K be subgroups of a group G of orders 3,5 respectively. Prove that $H \cap K = \{1\}$.
- 6. Justify (6.15) carefully.
- 7. (a) Let G be an abelian group of odd order. Prove that the map $\varphi: G \longrightarrow G$ defined by $\varphi(x) = x^2$ is an automorphism.
 - (b) Generalize the result of (a).
- 8. Let W be the additive subgroup of \mathbb{R}^m of solutions of a system of homogeneous linear equations AX = 0. Show that the solutions of an inhomogeneous system AX = B form a coset of W.
- 9. Let H be a subgroup of a group G. Prove that the number of left cosets is equal to the number of right cosets (a) if G is finite and (b) in general.
- 10. (a) Prove that every subgroup of index 2 is normal.(b) Give an example of a subgroup of index 3 which is not normal.
- 11. Classify groups of order 6 by analyzing the following three cases.
 - (a) G contains an element of order 6.
 - (b) G contains an element of order 3 but none of order 6.
 - (c) All elements of G have order 1 or 2.
- **12.** Let G, H be the following subgroups of $GL_2(\mathbb{R})$:

$$G = \left\{ \begin{bmatrix} x & y \\ 0 & 1 \end{bmatrix} \right\}, H = \left\{ \begin{bmatrix} x & 0 \\ 0 & 1 \end{bmatrix} \right\}, x > 0.$$

An element of G can be represented by a point in the (x, y)-plane. Draw the partitions of the plane into left and into right cosets of H.

7. Restriction of a Homomorphism to a Subgroup

- 1. Let G and G' be finite groups whose orders have no common factor. Prove that the only homomorphism $\varphi: G \longrightarrow G'$ is the trivial one $\varphi(x) = 1$ for all x.
- 2. Give an example of a permutation of even order which is odd and an example of one which is even.
- 3. (a) Let H and K be subgroups of a group G. Prove that the intersection $xH \cap yK$ of two cosets of H and K is either empty or else is a coset of the subgroup $H \cap K$.
 - (b) Prove that if H and K have finite index in G then $H \cap K$ also has finite index.

74

Chapter 2 Exercises

- **4.** Prove Proposition (7.1).
- 5. Let H, N be subgroups of a group G, with N normal. Prove that HN = NH and that this set is a subgroup.
- 6. Let $\varphi: G \longrightarrow G'$ be a group homomorphism with kernel K, and let H be another subgroup of G. Describe $\varphi^{-1}(\varphi(H))$ in terms of H and K.
- 7. Prove that a group of order 30 can have at most 7 subgroups of order 5.
- *8. Prove the Correspondence Theorem: Let $\varphi: G \longrightarrow G'$ be a surjective group homomorphism with kernel N. The set of subgroups H' of G' is in bijective correspondence with the set of subgroups H of G which contain N, the correspondence being defined by the maps $H \xrightarrow{} \varphi(H)$ and $\varphi^{-1}(H') \xleftarrow{} H'$. Moreover, normal subgroups of G correspond to normal subgroups of G'.
- 9. Let G and G' be cyclic groups of orders 12 and 6 generated by elements x, y respectively, and let $\varphi: G \longrightarrow G'$ be the map defined by $\varphi(x^i) = y^i$. Exhibit the correspondence referred to the previous problem explicitly.

8. Products of Groups

- 1. Let G, G' be groups. What is the order of the product group $G \times G'$?
- **2.** Is the symmetric group S_3 a direct product of nontrivial groups?
- 3. Prove that a finite cyclic group of order rs is isomorphic to the product of cyclic groups of orders r and s if and only if r and s have no common factor.
- 4. In each of the following cases, determine whether or not G is isomorphic to the product of H and K.
 - (a) $G = \mathbb{R}^{\times}$, $H = \{\pm 1\}$, $K = \{\text{positive real numbers}\}$.
 - (b) $G = \{$ invertible upper triangular 2×2 matrices $\}$, $H = \{$ invertible diagonal matrices $\}$, $K = \{$ upper triangular matrices with diagonal entries 1 $\}$.
 - (c) $G = \mathbb{C}^{\times}$ and $H = \{\text{unit circle}\}, K = \{\text{positive reals}\}.$
- 5. Prove that the product of two infinite cyclic groups is not infinite cyclic.
- 6. Prove that the center of the product of two groups is the product of their centers.
- 7. (a) Let H, K be subgroups of a group G. Show that the set of products $HK = \{hk \mid h \in H, k \in K\}$ is a subgroup if and only if HK = KH.
 - (b) Give an example of a group G and two subgroups H, K such that HK is not a subgroup.
- 8. Let G be a group containing normal subgroups of orders 3 and 5 respectively. Prove that G contains an element of order 15.
- 9. Let G be a finite group whose order is a product of two integers: n = ab. Let H, K be subgroups of G of orders a and b respectively. Assume that $H \cap K = \{1\}$. Prove that HK = G. Is G isomorphic to the product group $H \times K$?
- 10. Let $x \in G$ have order *m*, and let $y \in G'$ have order *n*. What is the order of (x, y) in $G \times G'$?
- 11. Let H be a subgroup of a group G, and let $\varphi: G \longrightarrow H$ be a homomorphism whose restriction to H is the identity map: $\varphi(h) = h$, if $h \in H$. Let $N = \ker \varphi$.
 - (a) Prove that if G is abelian then it is isomorphic to the product group $H \times N$.
 - (b) Find a bijective map $G \longrightarrow H \times N$ without the assumption that G is abelian, but show by an example that G need not be isomorphic to the product group.

9. Modular Arithmetic

- 1. Compute (7 + 14)(3 16) modulo 17.
- 2. (a) Prove that the square a² of an integer a is congruent to 0 or 1 modulo 4.
 (b) What are the possible values of a² modulo 8?
- 3. (a) Prove that 2 has no inverse modulo 6.
 (b) Determine all integers n such that 2 has an inverse modulo n.
- 4. Prove that every integer a is congruent to the sum of its decimal digits modulo 9.
- 5. Solve the congruence $2x \equiv 5$ (a) modulo 9 and (b) modulo 6.
- 6. Determine the integers n for which the congruences $x + y \equiv 2$, $2x 3y \equiv 3$ (modulo n) have a solution.
- 7. Prove the associative and commutative laws for multiplication in $\mathbb{Z}/n\mathbb{Z}$.
- 8. Use Proposition (2.6) to prove the Chinese Remainder Theorem: Let m, n, a, b be integers, and assume that the greatest common divisor of m and n is 1. Then there is an integer x such that $x \equiv a \pmod{m}$ and $x \equiv b \pmod{n}$.

10. Quotient Groups

- 1. Let G be the group of invertible real upper triangular 2×2 matrices. Determine whether or not the following conditions describe normal subgroups H of G. If they do, use the First Isomorphism Theorem to identify the quotient group G/H.
 - (a) $a_{11} = 1$. (b) $a_{12} = 0$ (c) $a_{11} = a_{22}$ (d) $a_{11} = a_{22} = 1$
- 2. Write out the proof of (10.1) in terms of elements.
- 3. Let P be a partition of a group G with the property that for any pair of elements A, B of the partition, the product set AB is contained entirely within another element C of the partition. Let N be the element of P which contains 1. Prove that N is a normal subgroup of G and that P is the set of its cosets.
- 4. (a) Consider the presentation (1.17) of the symmetric group S_3 . Let H be the subgroup $\{1, y\}$. Compute the product sets (1H)(xH) and $(1H)(x^2H)$, and verify that they are not cosets.
 - (b) Show that a cyclic group of order 6 has two generators satisfying the rules $x^3 = 1$, $y^2 = 1$, yx = xy.
 - (c) Repeat the computation of (a), replacing the relations (1.18) by the relations given in part (b). Explain.
- 5. Identify the quotient group \mathbb{R}^{\times}/P , where P denotes the subgroup of positive real numbers.
- 6. Let H = {±1, ±i} be the subgroup of G = C[×] of fourth roots of unity. Describe the cosets of H in G explicitly, and prove that G/H is isomorphic to G.
- 7. Find all normal subgroups N of the quaternion group H, and identify the quotients H/N.
- 8. Prove that the subset H of $G = GL_n(\mathbb{R})$ of matrices whose determinant is positive forms a normal subgroup, and describe the quotient group G/H.
- 9. Prove that the subset $G \times 1$ of the product group $G \times G'$ is a normal subgroup isomorphic to G and that $(G \times G')/(G \times 1)$ is isomorphic to G'.
- 10. Describe the quotient groups \mathbb{C}^{\times}/P and \mathbb{C}^{\times}/U , where U is the subgroup of complex numbers of absolute value 1 and P denotes the positive reals.
- 11. Prove that the groups $\mathbb{R}^+/\mathbb{Z}^+$ and $\mathbb{R}^+/2\pi \mathbb{Z}^+$ are isomorphic.

76

Miscellaneous Problems

- 1. What is the product of all *m*th roots of unity in \mathbb{C} ?
- 2. Compute the group of automorphisms of the quaternion group.
- 3. Prove that a group of even order contains an element of order 2.
- **4.** Let $K \subset H \subset G$ be subgroups of a finite group G. Prove the formula [G:K] = [G:H][H:K].
- *5. A semigroup S is a set with an associative law of composition and with an identity. But elements are not required to have inverses, so the cancellation law need not hold. The semigroup S is said to be generated by an element s if the set $\{1, s, s^2, ...\}$ of nonnegative powers of s is the whole set S. For example, the relations $s^2 = 1$ and $s^2 = s$ describe two different semigroup structures on the set $\{1, s\}$. Define isomorphism of semigroups, and describe all isomorphism classes of semigroups having a generator.
- 6. Let S be a semigroup with finitely many elements which satisfies the Cancellation Law (1.12). Prove that S is a group.
- *7. Let $a = (a_1, ..., a_k)$ and $b = (b_1, ..., b_k)$ be points in k-dimensional space \mathbb{R}^k . A path from a to b is a continuous function on the interval [0, 1] with values in \mathbb{R}^k , that is, a function f: $[0, 1] \longrightarrow \mathbb{R}^k$, sending $t \longrightarrow f(t) = (x_1(t), ..., x_k(t))$, such that f(0) = a and f(1) = b. If S is a subset of \mathbb{R}^k and if $a, b \in S$, we define $a \sim b$ if a and b can be joined by a path lying entirely in S.
 - (a) Show that this is an equivalence relation on S. Be careful to check that the paths you construct stay within the set S.
 - (b) A subset S of \mathbb{R}^k is called *path connected* if $a \sim b$ for any two points $a, b \in S$. Show that every subset S is partitioned into path-connected subsets with the property that two points in different subsets can not be connected by a path in S.
 - (c) Which of the following loci in \mathbb{R}^2 are path-connected? $\{x^2 + y^2 = 1\}, \{xy = 0\}, \{xy = 1\}.$
- *8. The set of $n \times n$ matrices can be identified with the space $\mathbb{R}^{n \times n}$. Let G be a subgroup of $GL_n(\mathbb{R})$. Prove each of the following.
 - (a) If $A, B, C, D \in G$, and if there are paths in G from A to B and from C to D, then there is a path in G from AC to BD.
 - (b) The set of matrices which can be joined to the identity I forms a normal subgroup of G (called the *connected component* of G).
- *9. (a) Using the fact that $SL_n(\mathbb{R})$ is generated by elementary matrices of the first type (see exercise 18, Section 2), prove that this group is path-connected.
 - (b) Show that $GL_n(\mathbb{R})$ is a union of two path-connected subsets, and describe them.
- 10. Let H, K be subgroups of a group G, and let $g \in G$. The set

$$HgK = \{x \in G \mid x = hgk \text{ for some } h \in H, k \in K\}$$

is called a *double coset*.

(a) Prove that the double cosets partition G.

- (b) Do all double cosets have the same order?
- 11. Let H be a subgroup of a group G. Show that the double cosets HgH are the left cosets gH if H is normal, but that if H is not normal then there is a double coset which properly contains a left coset.
- *12. Prove that the double cosets in $GL_n(\mathbb{R})$ of the subgroups $H = \{$ lower triangular matrices $\}$ and $K = \{$ upper triangular matrices $\}$ are the sets *HPK*, where *P* is a permutation matrix.