Homework 5

Theory of Numbers (Fall 2014) Rutgers University Swastik Kopparty

Due Date: Monday, December 1, 2014

Questions

- 1. Consider the sequence A_n defined as follows:
 - $A_0 = 0, A_1 = 3.$
 - $A_n = 7A_{n-1} 10A_{n-2}$, for each $n \ge 2$.

Use generating functions to find a formula for A_n .

- 2. Let a, n be natural numbers. Suppose $a^n 1$ is a prime.
 - Show that a=2.
 - Show that n must be prime.
- 3. The goal of this problem is to give a new proof of Fermat's little theorem.
 - Suppose p is prime, and that k is an integer with 1 < k < p. Prove that $\binom{p}{k}$ is divisible by p.
 - Suppose p is prime. Prove, by induction on n, that

$$n^p \equiv n \mod p$$
.

You will need the previous part of this problem.

• Deduce that if n is relatively prime to p, then

$$n^{p-1} \equiv 1 \mod p.$$

- 4. Let $n = p \cdot q$, where p and q are distinct primes. Show that n does not divide $\binom{n}{p}$.
- 5. Show that 3 is the only natural number p such that p, p + 2 and p + 4 are all prime.
- 6. Show that there are infinitely many natural numbers n such that $n, n+1, n+2, \ldots, n+1000$ are all composite.
- 7. **BONUS:** Show that if $n \equiv 3 \mod 4$, then there must exists some prime p dividing n such that $p \equiv 3 \mod 4$.

Use this to show the infinitude of primes $\equiv 3 \mod 4$ as follows. Suppose there were only finitely many such primes p_1, \ldots, p_t . Then consider the number $4 \cdot p_1 \cdot p_2 \cdot \ldots \cdot p_t + 3$.