Homework 4

Theory of Numbers (Fall 2014) Rutgers University Swastik Kopparty

Due Date: Monday, November 17, 2014

Questions

1. Suppose p is a prime and $p \equiv 4k + 3$. Let $a \in \mathbb{Z}_p$. We will see a simple way to compute the square root of a in \mathbb{Z}_p .

Observe that (p+1)/4 is an integer. Let $b = a^{(p+1)/4} \mod p$.

Prove that $b^2 \equiv a \mod p$.

Thus compute the square root of 8 mod 23.

2. Let p and q be distinct odd primes. Let $n = p \cdot q$.

Let $a \in \mathbb{Z}_n$. Show that a is a perfect square mod n if and only if a mod p is a perfect square mod p, and a mod q is a perfect square mod q.

Thus compute the number of perfect squares in \mathbb{Z}_n .

3. Prove that $10^n \equiv 1 \mod 3$ for each $n \ge 0$.

Use this to prove the correctness of the divisibility-by-3 test: a number m is divisible by 3 if and only if the sum of its digits (in the standard base-10 representation) is divisible by 3.

Hint: Suppose the digits of m are $m_k m_{k-1} \cdots m_1 m_0$.

4. Compute the set of perfect cubes in each of: \mathbb{Z}_5 , \mathbb{Z}_7 , \mathbb{Z}_{11} , \mathbb{Z}_{13} , \mathbb{Z}_{17} , \mathbb{Z}_{19} , \mathbb{Z}_{23} . (Don't show your work, just list the cubes).

Observe something about these sets, and make a conjecture.

5. **BONUS:** Show that the product of any 4 consecutive integers is divisible by 24.