INTRODUCTION

We begin with an overview of those areas in the tl'lt:l::n‘_l.-' of computation that
we present in this course. Following that, vou'll have a chance to learn and/for
review some mathematical concepts that you will need later,

0.1

AUTOMATA, COMPUTAEBILITY, AND COMPLEXITY

This book focuses on three rraditionally central areas of the theory of compura-
tiom: automata, computability, and complesity, They are linked by the question:

What are the fundemental copabilities and lonitations of compaters?

This question goes back 1o the 19305 when mathemarical logicians first began
to explore the meaning of computation. Technological advances since that tme
have greatly increased our ability to compure and have broughn this question out
of the realim of theory into the world of practical concern,

In each of the three areas—antomata, computability, and complexity—this
question s interpreted |.|if'F|:n,:|'|t|_l.-', and the answers vary according o the in-
terpretation.  Following this introducrory chaprer, we explore each area in a
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2 CHAPTER G/ INTRODUCTION

separate part of this book, Here, we introduce these parts in reverse order be-
cause by starting from the end you can berter understand the reason for the
beginning.

COMPLEXITY THEORY

Computer problems come in different varieties; some are easy, and some are
hard. For example, the sorting problem s an easy one, Say that vou need oo
arrange a list of nuombers in ascending order. Even a small computer can sort
a million numbers rather quickly, Compare that to a scheduling problem, Say
that vou must find a schedule of classes for the entire university o satisfy some
reasonable constraints, such as that no two classes ke place in the same room
at the same time. The scheduling problem seems to be much harder than the
sorting problem. If you have just a thousand classes, finding the best schedule
may require centuries, even with a supercompurer.

Wohat smakes rovre problemes comepartationally bavd and otbers eany?

This 15 the central gquestion of complesty theory, Bemarkably, we don't know
the answer to it, though it has been intensively researched for over 40 years.
Later, we explore this fascinating question and some of its ramifications.

In one important achievement of complexity theory thus far, researchers have
discovered an elegant scheme for classifying problems according to their com-
putational difficuley. It is analogons to the periodic table for classifving elements
according to their chemical properties. Using this scheme, we can demonstrate
a method for giving evidence thar certain problems are computationally hard,
even if we are unable to prove thar they are.

You have several options when vou confront a problem that appears to be
computationally hard. First, by understanding which aspect of the problem is at
the root of the diffculty, vou may be able to alter it so that the problem s more
easily solvable. Second, you may be able to settle for less than a perfect solution
to the problem. In certain cases, finding solutions that only approximate the
perfect one is relatively easy. Third, some problems are hard only in the worst
case situation, but easy maost of the time. Depending on the application, vou may
be satisfied with a procedure thar occasionally is slow but usually runs quickly.
Finally, vou may consider alternative types of computation, such as randomized
computation, that can speed up certain rasks.

Ome applied area that has been affected directly by complexity theory is the
ancient feld of cryptography. In most fields, an easy computational problem is
preferable to a hard one because easy ones are cheaper o solve. Cryprography
15 umusual becavse it specifically regquires computatonal problems that are hared,
rather than easy. Secret codes should be hard o break withour the secrer key
or password, Complexity theory has pointed cryprographers in the direction of
computationally hard problems around which they have designed revolutionary
mew codes,
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0.2 MATHEMATICAL MOTIGHNS AND TERMINOLOGY -3

COMPUTABILITY THEORY

Dwuring the first half of the rwenrtieth century, mathematicians such as Kurt
Crodel, Alan Tunng, and Alones Church discovered that certain basic problems
cannot be solved by compurers. One example of this phenomenon is the prob-
lem of determining whether a mathematical statement is true or false. This sk
is the bread and butter of mathematicians. It seems like a natural for solution
by computer because it lies serictly within the realm of mathematics. But no
computer algorithm can perform this task.

Among the consequences of this profound result was the development of ideas
concerning theoretical models of computers thar eventually would help lead to
the construction of actual compurers.

The theories of computabality and complexity are closely related. In come-
plexity theory, the objective is 1o classify problems as easy ones and hard ones;
whereas in computabality theory, the classibeaton of problems is by those that
are solvable and those thar are not. Compurability theory introduces several of
the concepts used in complexity theory.

AUTOMATA THEOQRY

Auntomata theory deals with the definitions and properties of mathemarical mod-
els of computation, These models play a role in several applied areas of computer
science. One model, called the finite quronearon, is used in text processing, com-
pilers, and hardware design. Another model, called the mwtexe-free grommar, is
used in programming languages and arrificial intelligence.

Automata theory 15 an excellent place o begin the study of the theory of
computation. The theories of computability and complexity require a precise
definition of a awpreter. Automata theory allows practice with formal definitions
of computation as it introduces concepts relevane to other nontheoretical areas
of computer science.

0.2

MATHEMATICAL NOTIONS AMD TERMINOLOGY

As in any mathematical subject, we begin with a discussion of the basic mathe-
matical objects, tools, and notation that we expect to use,

SETS

A set iz a group of objects represented as a unit. Sets may contain any type of
object, including numbers, symbals, and even other sets. The objects in a set are
called its efements or members, Sets may be described formally in several ways.
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4 CHAPTER G/ INTRODUCTION
One way is by listing a set’s elements inside braces. Thus the set
8 = {7.21,57)

contains the elements 7, 21, and 57. The symbaols € and ¢ denote set member-
ship and nonmembership. We write 7 £ {7,21,57} and 8 ¢ {7, 21,57}, For twao
sers A and B, we say thar A is a swbset of £, written A C 8, if every member of
A also is a member of B, We say thar A is a proper subset of B, writen 4 © B,
if A 15 a subset of 5 and not equal o 5,

The arder of describing a ser doesn’t martrer, nor does reperition of its mem-
bers, We get the same set 5 by writing {57, 7, 7. 7. 21 }. If we do want to take the
number of occurrences of members into aceount, we call the group a waftiset
instead of a set. Thus {7} and {7, 7} are different as multisers but identical as
sers. An fnfindte set contains infinitely many elements. We cannot wrire a list of
all the elements of an infinite set, so we sometimes use the . . ™ notation to mean
“continue the sequence forever,” Thus we write the ser of natwral munbers N
a5

{1.2.3....}
The set of integers Z 15 written as
[, —2,-1,0,1.2,...}

The set with zero members is called the empry set and is written §. A ser with
one member is sometimes called a singleton set, and a set with two members is
called an wnordered pair.

When we want to describe a set containing elements according to some rule,
we write | n| rule about n}. Thus {»|n = m? for some m £ A"} means the ser of
perfect squares.

If we have two sets A and B, the wwdor of A and &, written AU, 15 the set we
get by combining all the elements in A and B into a single set. The fetersection
of A and B, written A M B3, 15 the set of elements that are in both A and £, The
complement of A, written A, is the set of all elements under consideration that
are mot in A,

As is often the case in mathemaries, a picture helps clarify a concept. For sers,
we use a type of picture called a Fennr diaggram. It represents sets as regions
enclosed by circular lines. Ler the ser START-1 be the set of all English words
that start with the letter "t7, For example, in the figure, the circle represents the
set START-t. Several members of this set are represented as points inside the
circle.
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0.2 MATHEMATICAL MOTIOHNS AND TERMINOLOGY 5

START-1T
rerrific
tundra
theory

Ficure 0.1
Venn diagram for the ser of English words starting with “t”

Similarly, we represent the set END-z of English words that end with “2" in
the following figure.

END=x
UAFTE
JazE

raremataze

Ficure 0.2
Venn diagram for the ser of English words ending wich “2"

To represent both sets in the same Venn diagram, we must draw them so that
they overlap, indicating that they share some elements, as shown in the following
figure. For example, the word mpes is in both sets. The figure also contains a
circle for the set START-. It doesn't overlap the circle for START-t because no
word lies in hoth sets,

START-T EXND-E E-i'l'.'l.l!']'—j

LAY EHES B

Ficure 0.3
Chverlapping circles indicate common elements
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ﬁ CHAPTER G/ INTRODUCTION

The next two Venn diagrams depict the union and intersection of sets A

and £,
A B
N N A
(b

fa)

Ficure 0.4
Diagrams for (a) A U & and (b) AN &

SEQUENCES AMD TUFLES

A sequence of objects is a list of these objects in some order. We usually designare
a sequence by writing the list within parentheses. For example, the sequence 7,
21, 67 would be written

(7,21, 57).

The order doesn’t matzer in a set, but in a sequence it does. Hence (7,21, 57} is
not the same as (57,7, 21). Similarly, repeticion does marter in a sequence, but
it doesn't marter in a ser. Thus (7,7, 21, 57) is different from both of the other
sequences, whereas the set {7, 21, 57} s identical to the set {7, 7, 21,57},

As with sets, sequences may be finite or infinite. Finite sequences often are
called rapdes, A sequence with & elements 5 a E=tuple. Thos [7,21,57) 15 a
J-muple. A 2-ruple is also called an ordered pair.

Sets and sequences may appear a5 elements of other sets and sequences. For
example, the power set of A is the set of all subsets of A, If A is the set [0, 1],
the power set of A is the set {0, {0}, {1}, {0, 1} }. The set of all ordered pairs
whose elements are Os and 1515 { (0,00, [0, 1], (1.0}, (1,1 }.

If A and B are two sets, the Cartesian product or evoss product of A and
B, wrtten A = B, is the set of all ordered pairs wherein the first element 15 2
member of A and the second element is a member of 2.

ExamMpPLE 0.5
fA={1,2}and B ={x, 4 2}
Ax B={{1,#) (Lgh (1,2); (2.7), {2, 9), (2,2} }.

We can also tuke the Cartesian product of k sers, Ay, Az, ..., A, written
Ay = Ag = oo o Ag. Itis the ser consisting of all k-toples {0y, as..... i | where

i = A
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0.2 MATHEMATICAL MOTIOGHNS AND TERMINOLOGY Fi

ExamMPLE 0.6

If Aand B are as in Example 0.3,

AxBxA={{Lz1){1,z2), (Ly1), (L2 {lz1) (1,
(2,2, 1), 02,2, 2), (2,0, 1), (2,3.2), (2,2,1), {2,

21,
21k

L]

+4

If we hiave the Cartesian product of a set with iself, we use the shorthand
II'.
.l'_.ﬂ‘_"\.
Ax Adx.ox A= A%

ExamMPLE 0.7

The set A™ equals A™ = A" It consists of all ordered pairs of natural numbers.
We also may write itas {{. 1) 4,5 = 1}.

FUMCTIOMS AMD RELATIONS

Functions are central to mathematics, A famctfor s an object that sets up an
inpur—ourput relationship. A function takes an inpur and produces an ourpur.
In every function, the same input always produces the same output, IF fis a
function whose output value is b when the input value is a, we write

fla) =k

A funcrion also is called a smapping, and, if f{a) = b, we say thar f maps a to b

For example, the absolute value function abs takes 3 nomber = as impot and
rerurns ¥ if ¢ is positive and —z if ¢ is negative. Thus aba(2) = aba(-2) =
2, Additon 1s another example of a functon, written add, The input oo the
addition function is an ordered pair of numbers, and the ourpur is the sum of
those numbers.,

The ser of possible inputs to the function 15 called its domain. The ourputs
of a function come from a set called it resge. The notation for saying cthat [ is
a function with domain £ and range # is

f: D—R.

In the case of the function abe, if we are working with integers, the domain and
the range are Z, so we write abs: Z— 2, In the case of the addition function
for integers, the domain is the ser of pairs of integers 2 = Z and the range is Z,
s we write add 1 £ Z— Z. Note that a function may not necessarily use all
the elements of the specified range. The function abs never takes on the value
—1 even though —1 £ Z. A function thar does use all the elements of the range
is said to be ento the range.
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a CHAPTER G/ INTRODUCTION

We may describe a specific function in several ways. One way is with a pro-
cedure for computing an output from a specified input. Another way is with a
table that lists all possible inputs and gives the output for each inpat.

ExamMpPLE 0.8
Consider the function f: {0,1,2, 3,4} — {1, 1,2, 5, 4}.
fin)

—
-
=

LI

Jﬁ-\:nb-.'l—'-3|"n'.-
PO

]

This function adds 1 toits input and then outputs the result modulo 5. A number
modulo e is the remainder after division by mi. For example, the minuee hand
on a clock face counts module 60, When we do modular arithmerie, we defineg
Z = A0, 1,2, ., m — 1}, With this notation, the aforementioned function f
has the form @ 25— 2.

ExamMpPrLE 0.9

Somenmes a two-cimensional table 1= used if the domain of the function 15 the
Carresian product of rtwo sers. Here is another function, g: 2y = Z2,— Zy. The
entry at the row labeled & and the column labeled j in the mble is the value of

gii. gk
[ | nm 1 2 3
ofo 1 2 3
1j1 2 3 0
212 3 0 1
315 01 2

The funcrion g is the addition function modulo 4.

When the domain of a function fis A = o« A forsomesets Ay, ..., Ay, the
input o f is a k-rople (@), ag, ... iy ) and we call the @, the arguments o f. A
function with & arguments is called a =gy fowction, and & s called the sty of
the function. If & is 1, f has a single argument and [ is called a unary function.
If kis 2, f is a binary faunction. Certain familiar binary functions are written
in a special infix motation, with the symbol for the function placed berween is
two arguments, rather than in prefic soatation, with the symbol preceding. For
example, the addition function edd wsnally is written in infix notation with the
+ symhol between its two arguments as in o + b instead of in prefix notation
addd [a, b},
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0.2 MATHEMATICAL MOTIOGHNS AND TERMINOLOGY 9

A predicate or property is a function whose range is {TRUE, FALSE}. For
example, let even be a property that is TRUE if its input is an even number and
FALSE il its input i an odd number, Thus erenid) = TRUE and evenih) =
FALSE.

A property whose domain is a ser of E-ples A = -+~ 2 A s called a velation,
a =y redation, or g k=ary refatfon on A, A common case 15 a 2eary relation,
called a binary refation. When writing an expression involving a binary rela-
tiom, we customarily use infix notation. For example, “les than"” is 3 relaton
usuzlly written with the infix operation symbol <. *Equality”, wrirten with the
= symbal, 15 another famibiar relagon, If & 05 3 binary relation, the statement
afth means that afih = TRUE. Similarly, if # is a k-ary relation, the starement
iy, ..., g ) means that Bing, ... 00} = TRUE,

exampeLE 0.10

In a children’s game called Scissors-Paper-5tone, the owo players simultaneously
select o member of the set {SCISSORS, PAPER, STONE} and indicate their selec-
tions with hand signals. If the two selections are the same, the game starts over,
If the selections differ, one player wins, according to the relation beqts.

bty |S{;IH."rHRH PAPER  STONE

SCISS0ORS FALSE TRUE FALSE
PFAFER FALSE FALSE TEVE
STONE TRLUFE FALSE FALSE

Froom this table we determine that SCISS0RS beats PAPER s TRUE and that
PAPER feats SCISS0RS 05 FALSE.

Sometimes describing predicaves with sers instead of functions is more con-
venient. The predicate P: D— { TRUE, FALSE} may be written (7. 5, where
& = {a e D Ple) = TRUE}, or simply 5 if the domain {7 is obvious from the
context, Hence the relation beats may he written

[{SCISSORS, PAPER), [PAPER, STONE), (STONE, SCISSORS))

A special type of binary relavion, called an eguivalence relation, captures the
notion of two objects being equal in some fearure. A binary relation & is an
equivalence relation if F satisfies three conditions:

1. f is reflexive if for every x, xix;
2. 1 is symometric of for every « and g, =Ry imiphies g fx; and
3. R is transitive il for every x, i, and z, =Ry and gz implies = f=.

Capiaghd 3013 Crigips Lodiiin . Al Raihdi Rl Slig md b ool s sl o' ol bl 5 bl nb ], Dhae b s g b ssie Bl faily oombes iy b oy Do
rlmd ard'es o hapaea s Bbwral reors bansbeemnd s e cappeisnd nmeern ke s s gt thrsrarrsll brmmmpeyperss o Arpepe | earm ey reenoeocbs b e mmnr adkinumal
corEm @ e il ieberoE righs reariions ]



10 CHAPTER O/ INTRODUCTION

examMrLE 0,11

Define an equivalence relation on the namral numbers, written =5. Fori, j € A,
say that i =7 j,1fi—jis a multple of 7, This s an equivalence relation because it
satisfies the three conditions. First, ir is reflexive, as i — i = (), which is a multiple
of 7. Second, it is symmetric, as ¢ — § is a multiple of 7 if § — 1 is a multiple of 7.
Third, it is transitive, as whenever i — j is a multiple of 7 and j — & is a multiple
of 7, then 1 — &k = (i — )+ (j — k) is the sum of two multiples of 7 and hence a
multiple of 7, too.

GRAFPHS

An wndirected graph, or simply a grapl, is a ser of points with lines connecting
some of the points, The points are called wodes or vertéces, and the lines are
called edges, as shown in the following figure.

"157“ T
PG %!

{a) ib)

FIGURE 0.12
Examples of graphs

The number of edges at a particular node is the degree of that node, In
Figure 0.12{a), all the nodes have degree 2. In Figure 0L12(h), all the nodes have
degree 3, Mo more than one edge 15 allowed between any two nodes, We may

allow an edge from a node o itself, called a self~foop, depending on the simarion.

In a graph (& that contains nodes i and j, the pair (4, j) represents the edge that
connects ¢ and §. The order of @ and § doesn’t matter in an undirected graph,
so the pairs (i, 7] and (j,{] represent the same edge. Sometimes we describe
undirected edges with unordered pairs using set notation as in {4, j |, IV is the
set of nodes of & and £ is the set of edges, we say & = (V. £'). We can describe
a graph with a diagram or more formally by specifying 1 and E. For example, a
formal description of the graph in Figure (00,1203) 15

({1.2,3,4,5}, {{1,2), (2.3), (3,4}, {4,5), (5.1)}).
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0.2 MATHEMATICAL MOTIOMS AND TERMINOLOGY 11

and a formal description of the graph in Figure 0.12(b) is
({1,234}, {(1,2), (1.3). {1, 4), (2.3), (2.4}, {3, 4)}).

Graphs frequently are used to represent data, Nodes might be cities and edges
the connecting highways, or nodes might be people and edges the friendships
between them. Somerimes, for convenience, we label the nodes andfor edges of
a graph, which then is called a debeled graph. Figure 0.13 depicts a graph whose
nodes are cities and whose edges are labeled with the dollar cost of the cheapest
nonstop airfare for travel between those cities if Aying nonstop between them is
possible.

Ficure 0.13
Cheapest nonstop airfares berween various cities

We say that graph &' is a subgraph of graph H if the nodes of (7 are a subset
of the nodes of #, and the edges of € are the edges of 4 on the corresponding
nodes. The following figure shows a graph H and a subgraph .

Caraph B

Subpgraph o7
shown darker

Ficure 0.14

Crraph €7 (shown darker) is a subgraph of &
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12 CHAPTER O/ INTRODUCTION

A path in a graph is a sequence of nodes connected by edges. A sineple path
is a path that doesn't repeat any nodes. A graph is conmected if every two nodes
have a path hetween them. A path is a gpele if it starts and ends in the same node.
A simple cyele is one that contains at least three nodes and repeats only the first
and last nodes. A graph is a gree if it is connected and has no simple cycles, as
shown in Figure 0.15. A tree may contain a specially designated node called the
root. The nodes of degree 1 in a tree, other than the roor, are called the feauves
of the tree,

&5 806 i

FiIGURE 0.15
{a) A path in a graph, (h) a eycle in a graph, and (c) a tree

A divected graph has arrows instead of lines, as shown in the following figure.
The number of arrows pointing from a particular node is the endegree of that
nodde, and the number of arrows pointing to a particular node is the indegree,

Ficure 0.16
A directed graph
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0.2 MATHEMATICAL MOTIOMS AND TERMINOLOGY 1-3

In a directed graph, we represent an edge from { to J as a pair (3, 5). The
formal description of a directed graph & is [V, &), where V is the set of nodes
and F is the set of edges. The formal description of the graph in Figure 0,16 is

({1,2.3,4,56}, {(1,2), (1,50, (2,1), (2,4), (5.4), (5,6), (6.1}, (6,3)}).

A path in which all the arrows point in the same direction as its steps is called a
directed path. A direcred graph is stromply commected if a directed path connects
every two nodes. Directed graphs are a handy way of depicting binary relations.
If it is a binary relation whose domain is £ = [, a labeled graph & = (D, £
represents i, where E = {i{x, y)| xRy}

ExamMpPpLE 0.17

The directed graph shown here represents the relation given in Example 0,10,

SCISSORS @

Ficure 0.18
The graph of the relation bears

STRIMGS AMD LAMGUAGES

Strings of characters are fundamental building blocks in computer science. The
alphaber over which the strings are defined may vary with the application. For
our purposes, we define an alpbabet to be any nonempty finite set. The members
of the alphabet are the symibols of the alphabet. We generally use capital Greek
letters X and T to designate alphabets and o typewriter font for symbols from an
alphaber. The following are a few examples of alphabets,

Ty = [n1}
Yy ={abocdetfghiiklonopgratonyny.s)
={01 % vz}
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14 CHAPTER O/ INTRODUCTION

A string over an alphabet is a linite sequence of symbols from that alphaber,
usually written next to one another and not separated by commas. If £, = {0.1},
then 01001 is a SETinE over By, IFE: = {a,'h, e, z}, then abracadabrais a
string over g, If w is a string over ¥, the lemgth of w, written |/, is the number
of symbols thar it contains. The string of length zero is called the empty string
and 15 written £, The empty string plays the role of 00 2 number system, If w
has length n, we can write w = wywy - -y, where each wy € E. The reverse
of w, written w™, is the string obtained by writing w in the opposite order (1.e.,
iy ity —y - - -y ). String = is a sebstring of w if @ appears consecutively within .
For example, cad 15 a substring of abracadabra.

It we have string = of length m and string y of length #. the concatenation
of » and g, written xy, is the string obtained by appending i o the end of o, as
i@y - Ty« ime 10 coOncatenate a string with itself many times, we use the
SUHETSCEIPE motation o to mean

[
—,

FE--T.

The lexicographic order of strings is the same as the familiar dictionary order.
We'll occasionally vse a modibed lexicographic order, called shortfer omder or
simply string erder, that is identical vo lexicographic order, excepr thar shorter
strings precede longer strings, Thus the string ordering of all strings over the

alphaber {0.1} is
{£.0,1.00,01,10. 11,000, .. ).

Say that string i is a prefix of string o if a string = exists where 22 = g, and that

x is a praper prefix of y if in additon = £ y. A lamgnage is a set of srings. A
language is prefix-free if no member is a proper prefix of another member.

BOOLEAM LOGIC

Boolean logie is a mathematical system buile around the two values TRUE and
FALSE. Though onginally conceived of as pure mathemarics, this system is now
considered o be the foundation of digital electronics and computer design. The
values TRUE and FALSE are called the Boolean vafwes and are often represened
by the values 1 and 0. We use Boolean values in situations with two possibilities,
such as a wire thar may have a high or a low voltage, a proposition that may be
true or false, or a question that may he answered yes or no.

We can manipulate Boolean values with the Beolean opevations. The sim-
plest Boolean operation is the segation or NOT operation, designated with the
symbaol =, The negation of a Boolean value is the opposite value, Thos <0 = 1
and =1 = 0. We designate the comfunction or AND operation with the sym-
bol 4. The conjunction of two Boolean values is 1 if both of those values are 1.
The disfumction or OR operation is designared with the symbol v, The disjunc-
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0.2 MATHEMATICAL MOTIOMS AND TERMINOLOGY 1 5

tiom of two Boolean values is 1 if either of those values is 1, We swimmarize this
information as follows,

Haih=1il wi=1 =l =1
al=1 0vl=1 =1 =1
Lad=I) Ivil=1
141 =1 1v1l=1

We use Boolean operations for combining simple statements into more com-
plex Boolean expressions, just as we use the arithmetic operations + and = to
comstruct complex arithmetic expressions. For example, if P is the Boolean value
representing the truth of the statement “the sun is shining” and ¢} represents the
truth of the statement “today is Monday™, we may write P 4 Q) wo represent the
truth value of the statement “the sun is shining ard today is Monday™ and sim-
ilarly for F v ¢} with asd replaced by or. The values P and €} are called the
aperamds of the operation.,

Several other Boolean operations occasionally appear. The exefusive ar, or
XOR, operation is designated by the & symbol and is 1 if either but not both of
its two operands is 1. The eguality operation, wrirten with the symbol +, is 1
if hath of its operands have the same value. Finally, the fnplication operation
is designated by the symbol — and is O if its first operand is 1 and its second
operand is ( otherwise, — is 1. We summarize this information as follows,

=1 Del=1 h— =1
d=l=1 e 1l=10 0b—=1=1
1=0=1 1=0=I 1 ==
1¢1=1 le=1=1 l-+1=1

We can establish various relationships among these operations. In fact, we
can express all Boolean operations in terms of the AND and NOT operations, as
the following idenrities show. The rwo expressions in each row are equivalent.
Each row expresses the operation in the left-hand column in terms of operations
above it and AND and NOT.

Py et e
P P}
P (P = QIn (R — P
FPad =P )
The distribative fawe for AND and OR comes in handy when we manipulate
Boolean expressions. It is similar to the distriburive law for additon and mulri-

plication, which states that o« (b4 ¢) = [0 = b + {0 = ). The Boolean version
coames in two forms:

o ooy By equals (OF A Q)Y (P A R, and its dual
o Pou(Q s R)equals (Pv @) s Py R).
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16 CcHAPTER 0/ INTRODUCTION

SUMMARY OF MATHEMATICAL TERMS

Alphaber A finite, nonempry ser of objecrs called symibsels

Arguinent A ikt a fanction

Finary relation A retarion whiose domain is a ser of pairs

Boolean operaton Am operation on Boolean values

Bewdlean valoe The values TRUE or FALSE, odten represented by 1 oe ()

Carmesian product An operation on sets forming a set of all mples of elements from
respreCtive Sets

Complement An operation on 8 set, formming the setof all elements nor present

Concatenation A operation tha joins serings wgether

Conjuncrion Roolean AND operation

Connected graph A graph with paths connecting every mwo nodes

Cycle A path that starts and ends in the same oode

Directed graph A collection of points and arrews connecting some paics of points

Dhispuneton Bocdean (R operamon

Domain The set of possihle inpurs o a function

Edge Al inca graph

Element An alipect inoa set

Empiy ser T'he set with no members

Empty string The sering of length zero

Eaguivalence relation A binary relovion thar is reflesive, spmmetric, ond transipve

Funetion Ay operation thar translares inpuats fo et

Ciraph A collection of prints and fines connecting some pairs of points

[nrersection An operation on sets forming the set of common elements

k-tuple A lise of & odgecs

Language A serof sirings

Membaer A object in a set

Node A paint in a graph

Oirdered pair A Bse of two elements

Tach A sequence of nodes i o graph connected by edges

Predicare: A function whose range i [ TRUE, FALSE}

Property A predicate

Kange The set from which outputs of o funcrion are drawn

Relation A predicare, most ey pically when the demain is a set of EB-paples

Sequende A fise of ohjects

Het A proup of oljecs

Simiple path A path withowt repetition

Singleoon set A ser with one member

String A fisige st of symbaods from an alphaber

Symibol A member of an alphaber

Tree A comnected grapl withou simple cycies

UI.'I.IIJI'I AJ1 IHI'EI'HtiHI.'I A Seks L'I'.I’l'I:II'Ji.'IIi.'IIF il.] E[EI.'I'H.'I.'I"E ntrrd Hil'lg']l!' set

Unordered pair A ser with two membiers

Vertex A pount in s graph
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0.3 DEFIMITIONS, THEOREMS, AND PROOFS 17

0.3

DEFINITIONS, THEOREMS, AND PROOFS

Theorems and proofs are the heart and soul of mathematics and definitions are
its spirit. These three entities are central to every mathemarical subject, includ-
ing ours.

Diefroitions describe the obpects and notons that we vse, A definition may be
simple, as in the definition of set given earlier in this chaprer, or complex as in
the defimition of reawrty in a cryptographic system, Precision is essential too any
mathematical definition. When defining some object, we must make clear whart
constitutes that ehject and what does net.

After we have defined various objects and notions, we usually make mrth-
ematical statements about them. Typically, a statement expresses thar some
object has a certain property. The statement may or may not be true; bur like a
definition, it must he precise. Mo ambiguity ahout its meaning is allowed.

A prowf 15 3 convineing logical argument that a statement 15 true, In mathe-
matics, an argument must be airtight; thar is, convincing in an absolure sense. In
everviday life or in the law, the standard of proof is lower, A morder toal demands
proof “heyond any reasonable doubr.” The weight of evidence may compel the
jury g0 aecept the innocence or gole of the suspect. However, evidence plays
no role in a mathemartical proof. A mathemartician demands proof beyond awy
doubt.

A theoren is a mathematical statement proved true. Generally we reserve the
use of that word for statements of special interest. Oveasionally we prove state-
ments that are interesting only becanse they assist in the proof of another, more
significant statement. Such statements are called lememas, Occasionally a theo-
rem or its proof may allow us to conclude easily that other, related statements
are true. These statements are called corolfaries of the theorem.

FINDIMNG PROOFS

The only way to determine the truth or falsity of a mathematical statement is
with a mathematical proof. Unfortunately, finding proofs isnt always easy, It
can't be reduced toa simple set of rules or processes. During this course, vou will
be asked o present proofs of various sttements. Don't despair ar the prospect!
Even though no one has a recipe for producing proofs, some helpful general
strategies are availahle,

First, carefully read the statement you want to prove, Do you understand
all the noration? Rewrite the statement in your own words. Break it down and
comsider each part separately,
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18 CHAPTER O/ INTRODUCTION

Sometimes the parts of 3 multipart starement are not immediately evident.
One frequently occurring type of muldpart statement has the form “F if and
only if 7, often written * P iff ", where both P and @ are mathematical state-
ments. This notation is shorthand for a two-parr statement. The first part is “#
only if @, which means: If P is true, then €} is true, written P = (). The second
s P af 0" which means: IF Qi true, then P s true, written P <= 2, The first
of these pars is the ferward divection of the original starement and the second
15 the reverse divections, We write “F if and only oF Q27 as P a= 0 To prove a
statement of this form, you must prove each of the two directions. Often, one of
these directions is easier to prove than the other,

Another type of multipart statement states that two sets A and & are equal.
The first part states that A is a subset of 8, and the second part states thar 8
is a subser of A, Thus one common way to prove thar A = £ is to prove that
every member of A also is 2 member of &, and that every member of & also is a
member of A.

Mexr, when you want 1o prove a statement or part thereof, try to ger an in-
tuitive, “gut” feeling of why it should be true, Experimenting with examples is
especially helpful. Thus if the statement savs that all objects of a cermain wype
have a particular property, pick a few objects of that type and observe that they
actually do have thar property. After doing so, trv to find an object thar fails to
have the property, called a cosmterevample, IF the statement actually is true, you
will not be able to find a counterexample. Seeing where von run into difficaly
when yvou attempt to find a counterexample can help you understand why the
statement is true.

ExamrLE 0,19

Suppose that you want to prove the statement for every graph &, the snme of the
degrver of all the wdes i G i aw even wisviser,
First, pick a few graphs and observe this statement in action. Here are two

examples.

sun = A2+2 s = 2+ 342
L

=

Mext, oy to find a counterexample; that is, a graph in which the sum is an odd
muimber.
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0.3 DEFIMITIONS, THEOREMS, AND PROOFS 19

Every tine an edge s added,
the sum increases by 2,

Can you now begin to see why the statement is true and how to prove it?

If your are still stuck trying vo prove a statement, try something easier. Atrema
to prove a special case of the statement. For example, if vou are tryving to prove
that some property is true for every & = 0, first try to prove it for & = 1. I you
succesd, oy it for b = 2, and =0 on undl vou can understand the more general
case. If a special case is hard to prove, v a different special case or perhaps a
special case of the special case,

Finally, when you believe thar vou have found the proof, vou must write it
up properly, A well-wntten proof 15 a sequence of statements, wherein each one
follows by simple reasoning from previous starements in the sequence. Carefully
writing a proof is important, both to enable a reader o understand it, and for
vou to be sure that it is free from errors.

The following are a few tips for producing a proof,

* Be patient, Finding proofs takes time. If you don't see how to do it nght
away, don’t worry. Researchers sometimes work for weeks or even vears to
find a single proof,

Corre back fo 3t Look over the statement you want to prove, think about
it a bit, leave i, and then return a few minutes or hours laver. Ler che
umcomscions, intuitive part of vour mind have a chance o work,

Be mear, When you are building your intuition for the statement you are
rying to prove, use simple, clear picrures andfor text. You are trying o
develop your insight into the statement, and sloppiness gets in the way of
insight. Furthermore, when vou are writing a solution for another person
tor read, neatness will help thar person understand it

* Be concive, Brevity helps you express high-level ideas without getting lost in
derails. Good mathemarical notarion is useful for expressing ideas concisely.
But he sure to include enough of your reasoning when writing up a proof
=0 that the reader can easily understand what you are trving to say.
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20 CHAPTER O/ INTRODUCTION

For practice, lets prove one of DeMorgan’s laws.

THEoREM 0.20

For any two sets Aand B, AU B = AN B,

First, is the meaning of this theorem clear? If vou don't understand the mean-
ing of the symbols L or M or the overbar, review the discussion on page 4.

T prove this theorem, we must show that the two sets AU E and A0 5 are
equal. Recall thar we may prove that two sets are equal by showing that every
member of one set also is 3 member of the other and vice versa. Before looking
at the following proof, consider a few examples and then try to prove it vourself.

PrROOF This theorem states that two sets, AU B and AN B, are equal. We
prove this assertion by showing that every element of one also is an element of
the other and vice versa.

Suppose that © s an element of AU S, Then x5 not in AU B from the
definition of the complement of a set. Therefore,  is not in A and x is notin £,
from the definition of the union of two sets, In other words, x isin A and = is in
H. Hence the definition of the intersection of two sets shows that x is in AN .

For the ather direction, suppose that x is in A 71 B, Then « is in both A and
B, Therefore, x is not in A and = is not in &, and thus not in the union of
these two sers. Hence x is in the complement of the union of these sets; in other
words, xis in A U &, which completes the proof of the theorem.

Lets now prove the statement in Example 0,19,

THEoREM 0.21

For every graph 7, the sum of the degrees of all the nodes in (7 is an even
number,

PROOF Everv edge in (7 is connected to two nodes. Each edge contribures 1
o the degree of each node w which it is connected. Therefore, each edge con-
tributes 2 to the sum of the degrees of all the nodes. Hence, if 7 contains ¢
edpes, then the sum of the degrees of all the nodes of 7 is 2e, which is an even
numbber,
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0.4

TYPES OF PROOF

Several types of arguments arise frequently in mathematical proofs. Here, we
describe a few that often occur in the theory of computation. Mote that a proof
may contain more than one ovpe of argument becanse the proof may conrain
within it several different subproofs,

PROOF BY COMSTRUCTION

Many theorems state that a particular type of object exists. One way to prove
such a theorem is by demonstrating how to construct the object. This technique
is @ proaf by constraction.

Let's use a proot by construction to prove the following theorem. We define
a graph to be k-regudar if every node in the graph has degree k.

THEOREM 0.22

For each even number n greater than 2, there exists a 3-regular graph with n

nosles,

PRoOOF Letn bean even number greaver than 2. Construcr graph &7 = (V. E)
with n mosdes as follows, The set of nodes of G as Vo= {0,1,.. .0 = 1}, and the
ser of edges of €7 is the set

E={{i.i+1}| for0<i<n-2}u{{n-1,0}}
U {{f i+nfd}| ford<i<n/2-1}

Picture the nodes of this graph written consecutively around the circumference
of a circle. In that case, the edges described in the top line of £ go between
adjacent pairs around the circle. The edges described in the bottom line of F go
between nodes on opposite sides of the circle. This mental picture clearly shows
thar every node in €7 has degree 3.

FROOF BY COMNMTRADICTION

In one commaon form of argument for proving a theorem, we assume that the
theorem 15 false and then show that this assumptoon leads to an obviously false
consequence, called a contradiction. We use this type of reasoning frequently in
everviday Iife, as in the following example,
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22 CHAPTER O/ INTRODUCTION

ExamMPLE 0.23

Jack sees Jill, who has just come in from ourdoors. On observing that she is
completely dry, he knows that it is not raining, His “proof™ that it is not raining
is that §f it were raining (the assumprion that the staremen is false), Filf oondd e
wet (the obwiously false consequence). Therefore, it must not be rining.

MNext, let's prove by contradiction that the square root of 2 is an irrational
number. A number is rational if it is a fracion 2, where m and » are integers;
in other words, a rational number is the rasie of integers m and n. For example,
£ obwiously is a rational number. A number is irratiomal if it is not radonal,

THEoREM 0.24

W2 is irrational,

rrRoaF  Firs, we assume for the purpose of later obraining o contradiction
oy .
that +/2 i= rational. Thus

= m

Wi ==

n
where m and # are integers. If both m and = are divisible by the same integer
greater than 1, divide hoth by the largest such integer. Daing so doesn't change
the value of the fraction. Now, at least one of m and = must be an odd number.

We multiply both sides of the equation by n and obrain
av'2 = m.
We square both sides and obrain
Mt = m
Because m? is 2 times the integer n”, we know that m? is even. Therefore, m,
too, 15 even, a5 the square of an odd mumber always = odd, 5o we can write
m = 2 for some integer &. Then, substimuting 2% for m, we get
In® = (2k)?
= 4k%.
Dividing both sides by 2, we obtain
nt = 2k,

But this result shows that 0¥ is even and hence thar # is even. Thus we have
established that both moand # are even. But we had earlier reduced m and » so
that they were ot both even—a contradiction.

FPROOF BY INDUCTION

Proaf by induction is an advanced method vsed 1o show thae all elements of
an infinite ser have a specified property. For example, we may use a proof by
induction ro show that an arithmetic expression computes a desired quantiry for
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0.4 TYPES OF PROOF 23

every assignment to its variables, or that a program works correctly ar all steps
or for all inpurs.

T illuserare how proof by indection works, let’s rake the infinite set 1o be the
natural numbers, A" = {1,2,3. ... }, and say that the property is called 7. Our
goal is to prove thar P& is true for each namral number & In other words, we
want bo prove that P1] 15 true, as well as P20, P3), P4), and so om,

Every proof by induction consists of two parts, the basis and the feduction
step. Each part is an individual proof on its own, The basis proves that P01 s
rrue. The induction step proves thar for each @ > 1, if P(i) is troe, then so is
Pli+ 1)

When we have proven both of these parts, the desired result follows—namely,
that P(i) is true for each i. Why? First, we know that P(1) is true because the
basis alone proves it. Second, we know that 7(2] is true because the induction
step proves that if P(1) is true then P(2) is true, and we already know that P(1]
is true. Third, we know thar (3] is true becanse the induction step proves that
if P2} is true then P(3) is true, and we already know thar P(2) is rue. This
process continues for all natural numbers, showing that P(4) is true, Pi5) is
true, and sooon.

Once you understand the preceding paragraph, you can easily understand
variations and generalizations of the same idea. For example, the hasis doesn’t
necessarily need to start with 1; 6 may start with any value & In that case, the
induction proof shows that (k) is true for every & that is at least b

Inn the induction step, the assumption that P(1) is true is called the induction
bypotbesis. Sometimes having the stronger induction hypothesis that P(j) is
true for every § < ¢ is useful. The induction proof still works because when we
want to prove that P(i + 1) is true, we have already proved that P(5) is true for
EVETY § = i

The format for writing down a proof by induction is as follows,

Bagiz: Prove that P[1] 15 true.

Induction step: For each i = 1, assume that P(i} is true and use this assumption
to show thar P{i + 1] is orae.

Mow, let’s prove by induction the correcmess of the formula used w caleulare
the size of monthly payments of home mortgages. When buying a home, many
people borrow some of the money needed for the purchase and repay this loan
over a certain mumber of vears, Typically, the terms of such repayments stipulate
thar a fixed amount of money is paid each month to cover the interest, as well as
part of the original sum, so that the wetal is repaid in 30 years. The formula for
caleularing the size of the monthly payments is shrouded in mystery, but actually
is quite simple. Tt touches many people’ lives, so vou should find it interesting.
We use induction to prove that it works, making it a good illustration of that
rechinique,
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24 CHAPTER O/ INTRODUCTION

First, we set up the names and meanings of several variables. Ler P be the
principal, the amount of the onginal loan. Let I = 0 be the yearly interest rare of
the loan, where T = 0.06 indicates a 6% rate of interest. Let ¥ be the monthly
payment. For convenience, we use { to define another variable M, the monthly
multiplier. It is the rate at which the loan changes each month because of the
interest on it. Following standard banking practice, the monthly interest rare is
one-twelfth of the annual rate so M = 1 + /12, and inrerest is paid monchly
imonthly compounding).

Twao things happen each month. First, the amount of the loan tends o in-
crease because of the monthly multplier. Second, the amount tends to decrease
because of the monthly payment. Ler # be the amount of the loan outstand-
ing after the fth month. Then Py = P is the amount of the original loan,
P o= MPy - Y is the amount of the loan after one month, & = WP - Y 15
the amaount of the loan after two months, and so on. Now we are ready o state
and prove a theorem by induction on ¢ that gives a formula for the value of F.

THEOoREM 0.25

For each f =10,

Mt -1
Po=PM'-Y|—).
' fnr-l)

FPROOF

Bagis: Prove that the formula is true for ¢ = 00 If £ = 0, then the formula states

that
MY — 1
=PM"— V¥ )
By ( M—1 )

We can simplify the right-hand side by observing thar A" = 1. Thus we get
F=F
which holds becavse we have defined By o be P, Therefore, we have proved

thar the basis of the induetion is true.

Induction step: For each & = 0, assume that the formula is erue for £ = & and
show that it is rue for ¢ = & + 1. The induction hypothesis states thae

ME_]
=PMY Y A
B (.1f—|)

Ohur obyective 15 to prove that

¥ L g |
B..=PMHl_yl__—
Ml { W —
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EXERCISES 25

We do so with the following steps, First, from the definition of Py, from
P, we know that

F.'ﬂl] = F‘Q.ﬂ-f - "-.

Therefore, using the induerion hypothesis 1o caleulare P,

ME—1
= |PM*—¥ M-Y
Pirs l (M—l )]

Multiplying through by Af and rewriting ¥ vields

Peyy = PMM1_y (—ME_] — U ) ~¥ (‘” — 1)

M1 -1

MET -1
= PM* _y | ———1.
( M1 )

Thus the formula is correct for ¢ = & + 1, which proves the theorem,

Problem .15 asks you to use the preceding formula to calculate acrual mort-
gage payiments,

EXERCISES

0.1 Examine the following formal descriptions of sets so that you understand which
members they contain, Write a short informal English description of each ser
a {1357, ...
b {....—4,-2,0.2,4, ...}
e {n|nm = Zme for some vein A}
de {0] 5 = Zine For some o in N, and & = 3k for some & in A}
e, o w5 a sring of 05 and 18 and w equals the reverse of i}
F [n|nisaninteger and n = n 4 1}

2 Write formial descriptions of the following sets,

A, The serconcaining the mombers 1, 10, and 14

b, The serconcaining all integers thar are greater than 5

c.. Theset contaming all matoral nombers thar are Jess than 5
d. The set contaming the string aba

e, The ser containing the enipry string

. The ser containing nothing at all
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28  CHAPTER O/ INTRODUCTION

L3 Lot A be the set {x, 5.2} and 5 be che sec {x, ¥].

Is A a subser of B7

Is B a sulset of AF

What is A L 127

Whart is A m B2

What s A = B

What is the power set of [#7

=~ F PO Fop

04 If A has a elemenes and & has b elements, how many elements are in A = B?
Explain your answer.

0.5 107 55 a ser with e elements, how many elements are in the power set of CF Explain
:,-'1:-1.|r ANSWCT,

G Lo X betheser {1,234, 5} and ¥ be the ser {6, 7, 8, 9, 10} The unary function
5o X —¥ and the binary fumction g: X = YV — ¥V are deseribed in the following

takles,

n | find g6 7 & 9 1
1 i 1| I 1 I 1o
4 T 217 &8 9 M f
3 6 7T T & & 9
L ) 419 8 T & 10
i) i A6 & & 6 @

a. What is the value of Fi2)7

b, What are the range and donmain of 7

. What is the value of g2, 1057

d. What are the range and domain of g7

e, What is the valwe of g4, F{1])?

.7 For each part, give o relation that satishes the combinon,

3. Reflesive and symimerric bur not ransitive
b Reflexive and wransitive boe nor symmetne

€. Aymnetoc and mansitive ot oot refexve

0.8 Consider the undivected graph & ={V, E] where V', the setof nodes, is {1, 2. 3.4}
ond E, the set of edges, 45 {{1,2}; {2.3}. {13} {24}, {L4}}.  Draw the
graph &, What ore the degrees of each node?  Indicate a path from node 3 1o
nade 4 an your drwing of {5,
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PROBLEMS 27

0.9 Write s formeal deseripion of the following graph.

FROEBLEMS

0.10  Fina the ervor in the following proof thae 2 = 1.
Consider the equation o = b, Mulriply both sides by a o obtain o = ab, Subtract
t* from both sades to get o — 8 = ab— & . Now factor each side, (a + b)(a — b) =
t e = &), and divide each side by (o = &) o get o+ b = & Finally, let o and & equal 1,
which shows thar 2 = 1.

0.11 Let Sin) = 14+ 2+ -+ 4+ n be the sum of the Arsz o nomral oumbers and let
(n) = 1* + 2% + ... + n® be the sum of the first n cubes, Prove the following
eqqualities by induction on n, to arrive at the curious conclosion that Cin) = 5%(n)
for every .

a. S{n) = §n(n+1).
b. C(n) = 3in' + 20* + w®) = tn*{n + 1%

0,12 Find the error in the following proof thar all horses are the same color,
CLais: Inamy set of f horses, all horses are the same color,
ProOF: By indvction on f,

Basis: For & = 1. In any set containing just one horse, all horses cleardy are the
same codor.

Indwction step: For & = 1, assame thar the claim is orue for & = & and prove thae
it is true for b = k+ 1. Take any see i of &+ 1 horses. We show that all the horses
in this set are the same color, Remove nne horse from this set to obtain the sec 1,
with juse & hosses. By the induction hypothesis, all the horses in 5y ave the sane
cohor, Now replace the removed horse and remove o different one to olitam the set
Hy. By the same argument, all the horses in By are the same color, Therefore, all
the howses in 8 muse be the same colos, and the proof s complete.

0.13 Show that every graph with two or more nodes contains two nodes that have equal

degrees.
Copringhd 303 Cmigap lnsiming. A0 Raghds Resvved. blip md b oopond, s sl o el skl s bk e sl D b st @ e i B ety oo |y by U
B T R T B e e e e e P e T b et rmaae i gt craersl rammp ey s Serpage | earm g e ke tghe i s e akinsmal

corm B P Eee i ishsagmcm righs resrioions wpds B



28 CHAPTER O/ INTRODUCTION

**0.14 Ramsey's theorem. Let 7 be a graph. A cligue in 7 is 2 subgraph in which every
vwo nodes are connected by an edge. An anii-eligie, aleo called an fndependent
sek, 15 a subgraph in which every two nodes are noc connected by an edge, Show
that every graph with » nodes concains either a clique or an anti-clique with ar lease
% log, n nodes.

“0.15 Use Theorem 0,27 to derive a formula for calculating the size of the monthly pay-
mient for o mortgagee interms of the principal P, the interest rate §, ond the number
of payments £, Assume thar after ¢ payments have been made, the loan amount is
reduced o 0 Use the formuola v calealave the dollar amowne of each monchly pay-
mient for a 3leyvear mortgage with 360 monthly payments on an inigal loan amount
af S100,000 with a 5% annual interest rate,

SELECTED SOLUTIONS

004 Make space for two piles of nodes: A and B, Then, stardng with the entire graph,
repeatedly add each remaining node x wo A i is degree 5 greaver than one half the
number of remaining nodes and to 1 otherwise, and discard all nodes o which =
pn 't ish connected iF iv was added o A (5 Continue wnil no nodes are left, A
minst half of the nocdes are discarded at ench of these steps, so at least log, nosteps
will oceur before the process erminares, Fach step adds 3 node m one of the piles,
so one of the piles ends up with at least 2 log, n nodes. The A pile contains the
newdes of 8 clique and the # pile contains the nodes of an anti-clique,

0.1F Welet £ = 0 and solve for ¥ 1o get the formula: ¥ = PACM — 1)/ — 1),
For & = S100,000, T = 005, and ¢ = 360, we have W = 1+ (0.05)/12, We use s
calculator wo fnd thar ¥ /= B53G682 15 the monthly paviment.
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