
Lecture 9: Factoring in Fq[x]

Algorithmic Number Theory (Fall 2014)
Rutgers University
Swastik Kopparty

Scribe: Katie McKeon

1 Overview

Throughout this lecture, we assume that q is a power of an odd prime p and f is a polynomial of
degree d which we wish to factor in the field Fq[x]. We will give a randomized algorithm running
in poly(d, log q) time which gives the correct factorization with high probability. Our method can
be summarized as follows.

Algorithm 1 Factor f(x) ∈ Fq[x]

1. Reduce to the case that f(x) is square free.

2. Reduce to the case that all irreducible factors have the same degree.

3. Factor a square free polynomial with all irreducible factors in Fq[x] having the same degree.

2 Preprocessing the Polynomial

Given f(x) ∈ Fq[x] of degree d, we now discuss steps 1 and 2 of Algorithm 1.

2.1 Reduction to Square Free Polynomials

Recall from the last lecture that if f(x) is not square free, then one of the following is true:

i. The degree of gcd(f(x), f ′(x)) is in [1, d − 1]. In the last lecture, we discussed how to find a
factor of f in this case.

ii. f ′(x) = 0 and f(x) is a perfect pth power. In other words, f(x) = g(xp
m

) for some polynomial
g and m ≥ 1. In this case, we can factor g.

2.2 Reduction to Irreducible Factors of the Same Degree

Student suggestion: Why don’t we take two random a, b ∈ Fq and find gcd(f(ax + b), x
q−1
2 − 1)?

The hope is that there is a decent chance that the roots of f(ax+ b) have nontrivial gcd.

1



However, if f(x) is ireeduible of degree c, then the roots of f lie in Fqc and the roots of x
q−1
2 − 1

lie in Fq (i.e. they are exactly the quadratic residues.) So, this works only if f splits in Fq. This
suggests the necessity of breaking f up into factors which contain irreducibles of common degree.

Recall the following fact for finite fields: Let Cl represent the collection of monic polynomials in
Fq[x] of degree l. Then for any d

xq
d − x =

∏
l|d

∏
p∈Cl

p(x)

In particular, xq − x =
∏
α∈Fq

(x− α)

Proof. For all irreducible p(x) ∈ Fq[x] whose degree l divides d, the roots of p(x) are in Fql ⊆ Fqd .

Since the roots of xq
d − x give the field Fdq , we have that p(x) divides xq

d − x.

On the other hand if the degree l of p(x) does not divide d, then a root of p(x) generates Zql 6⊆ Fqd .

Since xq
d − x has derivative −1 it is square free and no powers of p show up in the factorization of

xq
d − x.

So, to reduce f into irreducibles of common degree, we initialize f1(x) = f(x). If f(x) =
∏
j

pj(x)

with each pj irreducible, then we want fi(x) =
∏

j,deg(pj)≥i

pj(x) and gi =
∏

j,deg(pj)=i

pj(x) for each i.

To find these gi’s and fi’s, let gi(x) = gcd(xq
i − x, fi(x)) and fi+1 = fi(x)/gi(x). Then each gi

is composed of irreducibles of degree exactly i and f(x) =
∏
i

gi(x) and it suffices to factor each

gi. Note that we can find the gcd of xq
i − x and fi(x) using the algorithm from lecture 8. It is

necessary for f to be square free in this step because each factor of xq
i − x occurs only once and

therefore the gcd might miss some factors for a particular gi.

3 Factoring the Preproccessed Polynomial in Fq[x]

Now, we assume that steps 1 and 2 in Algorithm 1 have been completed so that f has all factors

of degree l and is squarefree. Then f divides xq
l − x and xq

l − x = x(x
ql−1

2 − 1)(x
ql−1

2 + 1). Part 3
of the algorithm involves two steps:

1. Pick r(x) ∈ Fq[x] of degree k ≥ 2l uniformly at random

2. Compute gcd(r(x)
ql−1

2 − 1, f(x)). If nontrivial, then we found a factor of f in Fq.

Note that our old algorithm for factoring a polynomial of degree l assumes we can work with Fql
and gives roots in Fql . Since we want roots in Fq[x], and do not need to construct the whole field

Fql , we choose the randomized r(x) and raise it to the power ql−1
2 .

Theorem 1. If f is square free and all its irreducible factors have degree l, then suppose f1 and

f2 are two irreducible factors of f . Then Prob[fi(x)|r(x)
ql−1

2 − 1] ≈ 1/2 for each x and i = 1, 2.

2



Note that for i = 1, 2, fi(x) divides r(x)
ql−1

2 −1 if and only if fi(x) divides (r(x)−1 mod fi(x))
ql−1

2 −
1 which is a polynomial of degree at most l − 1 that we will show is uniformly random.

The idea of this proof is that choosing a uniformly random integer in [1, 100] gives a uniform
distribution of remainders mod 5, i.e. the probability that a uniform randomly chosen r has
remainder 2 mod 5 is 1/5.

Proof. Write r(x) = b(x)fi(x) + ui(x) for i = 1, 2, i.e. ui ≡ r mod fi. Observe that

Prob[fi(x)|ui(x)
ql−1

2 −1] = Prob[ui(x)
ql−1

2 ≡ 1 in Fq[x]/〈fi(x)〉] = Prob[ui(αi)
ql−1

2 −1 = 0 in Fql ] = 1/2

where αi is a root of fi in Fql . By the Chinese Remainder Theorem, specifying a remainder mod f1
and mod f2 is the same as specifying a remainder in f1 · f2 because f1 and f2 are relatively prime
(as both are irreducible and f was square free.) Therefore, the remainders u1 and u2 are uniform
and independent. Since

Prob[f1|r(x)
ql−1

2 − 1 and f2|r(x)
ql−1

2 − 1] = Prob[u1(α1) ∈ QR and u2(α2) ∈ QR]

(where QR denotes the set of quadratic residues in Fql), we have that the probability above is 1/4.

Similarly, the probability that f1 divides r(x)
ql−1

2 − 1 and f2 does not is 1/4 and vice versa. So,the

probability that the GCD will be nontrivial, i.e. one of f1 or f2 divides r(x)
ql−1

2 − 1, is 1/2.

4 Analysis

Theorem 1 gives a high probability that step three will produce a factor of f , if f factors. We
can easily check whether f factors because, a polynomial f(x) of degree d irreducible if and only

if gcd(xq
l − x, f(x)) = 1 for all l < d. So, checking whether the factors we found are irreducible

amounts to more gcd operations.

Recall that an efficient method for computing gcd(x
ql−1

2 − 1, g(x)) was given a previous lecture.

Namely, compute x mod g(x);x2 mod g(x);x4 mod g(x); . . . ;x2
log q

mod g(x) sequentially and
reduce at each step. This runs in poly(l log q) time. Thus, Algorithm 1 which uses this gcd
operation (with l ≤ n) runs in poly(d, log q) time.

Note that this algorithm cannot be adjusted in a minor way to give a deterministic algorithm for
finding factors. This was not even possible in the previous algorithm for finding quadratic residues.
However, next time we will see an algorithm of Berlekemp which runs in time poly(d, p, log q) which
is deterministic.

Recall that throughout we assumed that q was a power of an odd prime. On the other hand, if
p = 2, we use the polynomial

(x+ x2 + x4 + . . .+ x2
n−1

)

throughout the algorithm instead of x
ql−1

2 − x. This is a sparse polynomial with about half of 2n

being roots of the polynomial.

3


