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1 Review of Finite Fields

A finite field is a field with a finite number of elements. Let F be a finite field. What can we say
about F? Since 1 ∈ F , and F is finite, adding 1 to itself enough times eventually gives 0. The
smallest number of copies of 1 required to get 0 is called the characteristic of F . The characteristic
of F must be prime, call it p. It is well known that F has cardinality q = pn for some positive
integer n. We write F = Fq for the unique finite field with cardinality q (see Fact 3).

Let’s start with some basic facts about finite fields:

Fact 1. Fp = Z/pZ. So any finite field of prime cardinality is cyclic.

Fact 2. Fpk = Fp[x]/ < f(x) >, where f(x) is any irreducible polynomial of degree k in Fp[x].

Fact 3. Let q = pn for a prime p and a positive integer n. Then there is a unique finite field of
cardinality q. It turns out Fq = {x ∈ Fp | xq = x}.

Fact 4. The multiplicative subgroup G = F∗q is cyclic.

Proof of Fact 4. Let d = exp(G) denote the smallest positive integer such that gd = 1∀g ∈ G.
Consider the polynomial f(x) = xd−1. Then f(x) has at most d distinct roots. But every g ∈ G is
a root of f(x) by the definition of exp(G). So f(x) has at least q−1 distinct roots. Hence d = q−1,
and so G is cyclic.

Fact 5. Let q = pn for some odd prime p. If d | q − 1 then ∃ a subgroup G ⊆ F∗q such that

[F∗q : G] = d. It turns out G = {xd | x ∈ F∗q}, the set of all d-th powers.

Fact 6. Let q = pn for some odd prime p. Approximately half of Fq are perfect squares, and
consequently, approximately half are not perfect squares.

2 Open Problems

The following open problems require a poly(log p, k) or poly(log p) time algorithm to close them.

Open Problem 1. Given p prime and k a positive integer, find an irreducible polynomial of degree
k over Fp.

This problem is open even for k = 2. There is a randomized algorithm that works.
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Open Problem 2. Given p prime, find a generator of F∗p.

This problem is believed to be doable. A random element is a generator with probability 1
log log p .

Open Problem 3. Given p prime and b ∈ F∗p, is b a generator of F∗p?

Open Problem 4 (Discrete Log Problem). Given p prime and b, c ∈ F∗p, find d (if any) such that

bd = c in Fp.

3 Finding k-th Roots in Finite Fields

We begin with the problem of finding k-th roots.

Question 1 (Finding k-th Roots). Given p prime, a ∈ F∗q, and k ∈ N, does there exist b ∈ F∗q such

that bk = a in Fq?

If we can factor xk − a, then we can find b. We may assume k | q − 1 for the following reason. By
Fact 4, F∗q ∼= Z/(q− 1)Z. Hence, x ∈ F∗q is a perfect k-th power iff x is a perfect d-th power (where

d = gcd(k, q − 1)) iff x
q−1
d = 1.

Let’s consider the simpler special case where p is an odd prime and q = p, so that 2 | q − 1. Can
we find square roots?

Question 2 (Finding Square Roots). Given p odd prime, and a ∈ Fp, find b ∈ Fp such that b2 = a
in Fp?

Equivalently, what are the roots of x2 − a? We should try and understand more about the roots.
Can the roots be the same? If b is a root, then −b is also a root. b = −b iff 2b = 0 iff b = 0 iff
a = 0. Hence, the roots are the same iff a = 0. If a 6= 0, then there are 2 distinct roots: ±b.

If we can find a polynomial R(x) such that:

1. b is a root of R(x)

2. −b is not a root of R(x)

Then the gcd(R(x), x2 − a) = x − b, giving us the value of one of the roots b (and hence both of
the roots).

Consider the polynomial R(x) = x
p−1
2 − 1, which has the following properties:

1. R(x) has p−1
2 roots (around half of Fp are roots)

2. R(x) is a sparse polynomial

It is entirely possible that both b and −b are roots of R(x) or neither are roots of R(x). To get a
deterministic algorithm that finds the square root of a, we want a polynomial that selects exactly
one of ±b to be a root. If instead, we try a randomized algorithm, we only require a polynomial
that selects exactly one of ±b to be a root half the time. Berlekamp realized that by applying a
randomized affine shift to x2 − a, we can essentially randomize the two roots. Then exactly one of
the randomized roots will be a root of R(x) with probability 1

2 .
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3.1 Berlekamp’s Algorithm for Finding Square Roots in Fp

Let p be an odd prime. To factor x2 − a in Fp, we first pick c, d ∈ Fp uniformly at random. Define
G(x) = (cx+d)2−a, the randomized affine shift of x2−a. Then the roots of G(x) are b−d

c and −b−dc .

As c and d are independent uniform random, b−d
c and −b−dc are also independent uniform random.

Hence, we have come up with a new quadratic whose roots are independent uniform random, and
finding the roots of this new quadratic will tell us the roots of the original quadratic x2 − a.

Next, we compute the gcd(R(x), G(x)) = gcd(x
p−1
2 − 1, G(x)). As deg(G(x)) = 2, the Euclidean

Algorithm finishes in at most 3 steps, the first of which is the most computationally difficult. We

must somehow compute x
p−1
2 −1 (mod G(x)). Note that it is enough to find x

p−1
2 (mod G(x)). We

may do this using the standard method of repeated squaring involving the binary representation of
p−1
2 . Note that we used the sparseness of R(x) in this step. For sparse R(x), the repeated squaring

computation only happens very few times.

As discussed earlier, the gcd will be linear with probability 1
2 . This gives us a root of G(x), which

in turn allows us to get a root of x2 − a.

Note that the algorithm only works for p an odd prime. When p = 2, the polynomial x2
n−1 − 1 has

only a single root as x 7→ x2 is an automorphism. This suggests the following question:

Question 3. In F2n, is there a sparse polynomial with around half the field as roots?

Yes, the trace polynomial x + x2 + x4 + · · ·+ x2
n−1

.

4 General Factoring

Our plan for factoring any polynomial is this:

1. Remove squared factors

2. Make all irreducible factors have the same degree

3. Berdekamp’s randomness trick

4.1 Removing Squared Factors

We use the following lemma to identify squared factors:

Lemma 1. If a(x)2 | f(x), then a(x) | gcd(f(x), f ′(x)).

Proof. Suppose f(x) = a(x)2b(x). Then:

f ′(x) = 2a(x)a′(x)b(x) + a(x)2b′(x).

So a(x) | f ′(x).
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To remove squared factors of f(x), compute the g(x) = gcd(f(x), f ′(x)). Consider f(x)
g(x) and repeat

gcd trick to remove its squared factors, etc.

This algorithm makes progress as long as f ′(x) 6= 0. When does the algorithm get stuck? We need
to know when f ′(x) = 0.

Write f(x) =
d∑

i=0

aix
i. Then f ′(x) =

d∑
i=0

iaix
i−1. If f ′(x) = 0, then p | iai for 0 ≤ i ≤ d. So either

ai = 0 or p | i. So we may write:

f(x) =
m∑
i=0

aipx
ip = (b(x))p,

where b(x) =
m∑
i=0

(aip)
1
pxi =

m∑
i=0

(aip)
pn−1

xi.
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