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1 Introduction to Lattices

Definition 1. A lattice is a set L ⊂ Rn that is a discrete, additive group.

For example, Zn is a lattice. Note that S = {a+ b
√

2 : a, b ∈ Z} is a additive group, but is not a
lattice because it is not discrete. One can find nonzero elements of S arbitrarily close to 0.

Definition 2. If L ⊂ Rn is a lattice and dimR(L) = n we say L is a full rank lattice.

Theorem 3. Every full rank lattice L ⊆ Rn is of the form M · Zn where M is a full rank n × n
matrix.

Proof. We first show that L is finitely generated as an abelian group.

Let v1, . . . , vn ∈ L be such that their R-span equals Rn. Observe that there is a constant C such
that every x ∈ Rn is C-close to the integer span of {v1, . . . , vn}. To see this, write x =

∑
αivi

where each αi ∈ R; then x is C close to
∑

idαicvi for some C depending only on v1, . . . , vn.

Suppose we have an infinite sequence v1, v2, . . . ,∈ L such that each vi is not in the integer span of
v1, . . . , vi−1. Then for each i > n, vi is C-close to some element wi in the integer span of v1, . . . , vn.
Then vi − wi ∈ BC , the ball of radius C around 0. We also have vi − wi ∈ L. Finally, we notice
that vi − wi are all distinct. Thus the collection of points vi − wi, which all lie in L, have a limit
point. This contradicts the discreteness of L. Thus such an infinite sequence does not exist, and
so L is a finitely generated group.

Now we show that L is contained in the Q-linear span of v1, . . . , vn.

Let w ∈ L, so we can uniquely write w =
∑n

i=1 civi. If the ci are all rational, we are done.
Otherwise we will contradict discreteness. Let ε > 0. By an application of Dirichlet’s pigeonhole
principle, there exists an integer q such that qci is within ε of an integer (this is called a simultaneous
diophantine approximation). Thus we have that qw = u+

∑n
i=1 δivi where |δi| < ε and u ∈ L. But

qw− u ∈ L, and ‖qw− u‖ = ‖
∑n

i=1 δivi‖ ≤
∑n

i=1 ‖δivi‖ ≤ ε
∑
‖vi‖. Since, this holds for arbitrary

ε, we see that L has vectors arbitrarily close to 0. This contradicts discreteness.

So after a change of basis, we have that L is a finitely generated subgroup of Qn. Let v1, . . . , vm
(m > n) be a set of vectors whose integer span equals L. By the Hermite Normal Form theorem
from last class, there is a set of n vectors whose integer span equals L.

To represent a lattice, we can then give a basis b1, . . . , bn ∈ Rn. Then L = {
∑

i aibi : ai ∈ Z}, i.e.
is the integer linear span of this set of vectors. For computational problems we will often assume
that the bi ∈ Qn or even in Zn.
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There are two fundamental hard problems in the theory of lattices. They are

1. The Shortest Vector Problem (SVP): Given a lattice L (represented by basis vectors b1, . . . , bn)
find a nonzero vector of shortest length. Note that this vector need not be unique. If L = Zn

then ±ei where ei is the standard basis vector has shortest nonzero length.

2. The Closest Vector Problem (CVP): Given a lattice L and a vector y, find x ∈ L such that
‖x− y‖ is minimized.

Both of these problems are known to be NP-hard. These problems are not NP-hard if the dimension
is fixed, however. To be precise: let n be the dimension that the lattice lives in and if every
coordinate in the presented basis of L has absolute value ≤ A, then the input size is ≤ n2 log(A).
The following are known

• There is no algorithm to solve SVP or CVP in time poly(n2 log(A)).

• There exists an algorithm in time 2poly(n) · poly(log(A)).

2 Gauss’ Algorithm for SVP in 2 Dimensions

It is worth noting that the SVP is already interesting in two dimensions. For example, let L be

the lattice given by the integer column space of M =

[
39129 26790
69680 47707

]
. It is perhaps not obvsious

that the columns of M span the same lattice as the columns of M ′ =

[
1 2
1 2

]
. Below is Gauss’

algorithm:

1. Start with u, v ∈ Z2. Assume (or swap to make true) that ‖u‖ ≤ ‖v‖.

2. Let m =
⌊
〈v,u〉
‖u‖2

⌉
. Note that

〈v, u〉
‖u‖2

u is the projection of u onto v. So this is an integer m ∈ Z

such that ‖v −mu‖ is minimized.

3. Set v = v −mu

4. If ‖v‖ ≤ ‖u‖ then swap u and v and goto step 2. Otherwise terminate.

There are two things to show. One that when the algorithm stops, that u is the shortest vector, and
two that the algorithm is efficient. The second concern will be illustrated in homework exercises.
Below we show that upon termination, u is the shortest vector.

Observe that we have ‖u‖ ≤ ‖v‖ and

∣∣∣∣〈v, u〉‖u‖2

∣∣∣∣ ≤ 1

2
(∗). We want to show that for all a, b ∈ Z not

both zero that ‖au+ bv‖2 ≥ ‖u‖2. We can expand the left hand side as

‖au+ bv‖2 = a2‖u‖2 + b2‖v‖2 + 2ab〈u, v〉
≥ a2‖u‖2 + b2‖v‖2 − ‖ab‖‖u‖2 (using equation *)

= ‖u‖2(a2 + b2 − |ab|)
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Now observe that if a or b is zero then a2 + b2 ≥ 1 and ab = 0, so we obtain ‖au + bv‖2 ≥ ‖u‖2.
If both are nonzero, assume without loss of generality that |a| ≥ |b| and we have a2 ≥ |ab| so
a2 + b2 − |ab| ≥ b2 ≥ 1, and again we have ‖au+ bv‖2 ≥ ‖u‖2.

Next, we have a variation of Gauss’ algorithm that gives an “almost shortest vector” and can easily
be seen to be efficient:

1. Start with u, v ∈ Z2. Assume (or swap to make true) that ‖u‖ ≤ ‖v‖.

2. Let m =
⌊
〈v,u〉
‖u‖2

⌉
. Note that

〈v, u〉
‖u‖2

u is the projection of u onto v. So this is an integer m ∈ Z

such that ‖v −mu‖ is minimized.

3. Set v = v −mu

4. If ‖v‖ ≤ 0.9‖u‖ then swap u and v and goto step 2. Otherwise terminate.

The length of the shorter vector decreaes by a factor of at least 0.9 at each iteration and so the
algorithm is fast. Upon termination we have ‖u‖ ≤ 1.1‖v‖ and similar to above ‖au + bv‖2 ≥
‖u‖2(a2 + 0.92b2− |ab|) for all not both zero integers a, b ∈ Z. Now in minimizing a2 + 0.92b2− |ab|
we see that we may as well have ab ≥ 0 so it suffices to consider a, b ≥ 0. In this case, the expression
becomes a2+0.92b2−ab. If a or b is zero then we either obtain 1 or 0.92 = 0.81. If both are positive
then observe a2 + 0.92b2− ab = (a− 0.9b)2 + 0.8ab ≥ 0.8. So we have shown ‖au+ bv‖2 ≥ 0.8‖u‖2.
So u is within a small factor of the shortest vector.
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