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1 Introduction to Lattices

Definition 1. A lattice is a set L C R™ that is a discrete, additive group.

For example, Z" is a lattice. Note that S = {a 4+ bv/2 : a,b € Z} is a additive group, but is not a
lattice because it is not discrete. One can find nonzero elements of S arbitrarily close to 0.

Definition 2. If L C R" is a lattice and dimg(L) = n we say L is a full rank lattice.

Theorem 3. Every full rank lattice L C R™ is of the form M - 7" where M is a full rank n x n
matriz.

Proof. We first show that L is finitely generated as an abelian group.

Let v1,...,v, € L be such that their R-span equals R™. Observe that there is a constant C' such
that every x € R™ is C-close to the integer span of {vi,...,v,}. To see this, write x = > a;v;
where each a; € R; then z is C close to ), [a; |v; for some C depending only on vy, ..., v,.

Suppose we have an infinite sequence vy, v, ..., € L such that each v; is not in the integer span of
v1,...,V;—1. Then for each ¢ > n, v; is C-close to some element w; in the integer span of vy, ..., v,.
Then v; — w; € Bg, the ball of radius C' around 0. We also have v; — w; € L. Finally, we notice
that v; — w; are all distinct. Thus the collection of points v; — w;, which all lie in L, have a limit
point. This contradicts the discreteness of L. Thus such an infinite sequence does not exist, and
so L is a finitely generated group.

Now we show that L is contained in the Q-linear span of vy, ..., v,.

Let w € L, so we can uniquely write w = > | ¢v;. If the ¢; are all rational, we are done.
Otherwise we will contradict discreteness. Let ¢ > 0. By an application of Dirichlet’s pigeonhole
principle, there exists an integer ¢ such that gc; is within e of an integer (this is called a simultaneous
diophantine approximation). Thus we have that qw = u+ > ; d;v; where |§;| < ¢ and v € L. But
qw—u € L, and [Jqw —u|| = || Y21, divi|| < D0 [16vi]] < € ||vil|. Since, this holds for arbitrary
€, we see that L has vectors arbitrarily close to 0. This contradicts discreteness.

So after a change of basis, we have that L is a finitely generated subgroup of Q". Let vi,..., v,
(m > n) be a set of vectors whose integer span equals L. By the Hermite Normal Form theorem
from last class, there is a set of n vectors whose integer span equals L. ]

To represent a lattice, we can then give a basis b1,...,b, € R". Then L = {>, a;b; : a; € Z}, i.e.
is the integer linear span of this set of vectors. For computational problems we will often assume
that the b; € Q" or even in Z™.



There are two fundamental hard problems in the theory of lattices. They are

1. The Shortest Vector Problem (SVP): Given a lattice L (represented by basis vectors by, . .., b,)
find a nonzero vector of shortest length. Note that this vector need not be unique. If L = Z"
then 4e; where e; is the standard basis vector has shortest nonzero length.

2. The Closest Vector Problem (CVP): Given a lattice L and a vector y, find = € L such that
|z — y|| is minimized.

Both of these problems are known to be NP-hard. These problems are not NP-hard if the dimension
is fixed, however. To be precise: let n be the dimension that the lattice lives in and if every
coordinate in the presented basis of L has absolute value < A, then the input size is < n?log(A).
The following are known

e There is no algorithm to solve SVP or CVP in time poly(n?log(A)).

e There exists an algorithm in time opoly(n) . poly(log(A)).

2 Gauss’ Algorithm for SVP in 2 Dimensions

It is worth noting that the SVP is already interesting in two dimensions. For example, let L be
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the lattice given by the integer column space of M = [
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that the columns of M span the same lattice as the columns of M’ = [

algorithm:

1. Start with u,v € Z?. Assume (or swap to make true) that |jul| < |jv].

(v, u)
[l
such that ||v — mu/|| is minimized.

u is the projection of u onto v. So this is an integer m € Z

2. Let m = V’”“ﬂ. Note that

[l

3. Set v=v—mu

4. If ||v|| < ||u|| then swap v and v and goto step 2. Otherwise terminate.

There are two things to show. One that when the algorithm stops, that u is the shortest vector, and
two that the algorithm is efficient. The second concern will be illustrated in homework exercises.
Below we show that upon termination, « is the shortest vector.
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both zero that |lau 4 bv||? > ||u||?>. We can expand the left hand side as

Observe that we have ||u| < ||v|| and (). We want to show that for all a,b € Z not

lau + va2 = CL2Hu||2 + b2HvH2 + 2ab{u,v)

V

a?|[ul|* + 0?|[v]|* — [|ab]l[|u]]* (using equation *)
lull?(a® + 6% — |ab])



Now observe that if a or b is zero then a? 4+ b?> > 1 and ab = 0, so we obtain |jau + bv||* > |lul/*.
If both are nonzero, assume without loss of generality that |a| > |b| and we have a® > |ab| so
a® 4 b2 — |ab| > b? > 1, and again we have ||au + bv|* > |jul/®. O

Next, we have a variation of Gauss’ algorithm that gives an “almost shortest vector” and can easily
be seen to be efficient:

1. Start with u,v € Z2. Assume (or swap to make true) that ||ul| < |[v].

v,u) o . :
2. Let m = V““W. Note that ( >u is the projection of u onto v. So this is an integer m € Z

full e

such that ||v — mu/|| is minimized.
3. Set v =v —mu

4. If ||v]| < 0.9||u|| then swap uw and v and goto step 2. Otherwise terminate.

The length of the shorter vector decreaes by a factor of at least 0.9 at each iteration and so the
algorithm is fast. Upon termination we have |lu| < 1.1||v|| and similar to above |lau + bv||? >
|lu||?(a? +0.92b — |ab|) for all not both zero integers a,b € Z. Now in minimizing a? + 0.926? — |ab|
we see that we may as well have ab > 0 so it suffices to consider a,b > 0. In this case, the expression
becomes a’+0.92b% —ab. If a or b is zero then we either obtain 1 or 0.92 = 0.81. If both are positive
then observe a? + 0.9%6> — ab = (a — 0.9b)? + 0.8ab > 0.8. So we have shown ||au + bv||? > 0.8]ul|%.
So w is within a small factor of the shortest vector.



