
Lecture 4: Finding complex solutions to univariate polynomials

Algorithmic Number Theory (Fall 2014)
Rutgers University
Swastik Kopparty

Scribes: Amey Bhangale

1 Finding integer solutions to system of linear equations

Recall from the previous lecture that the problem is, given m linear equations over Z in n variables,
we want to find integer solutions to this system. Suppose the linear equations are:

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2
...

an1x1 + an2x2 + · · ·+ amnxn = bm

Let A be the m × n matrix where the (i, j)th entry of A is aij and b be the vector of length
m, where the ith entry is bi. Let x = [x1, x2, . . . , xn]. In the previous lecture, we saw how to
efficiently transform the matrix A into its Hermite Normal form H = [B | 0], where B is a lower
triangular matrix, by doing a sequence of integer column operations. Note that, each integer
column operation can be written as product of an original matrix with an upper triangular matrix
Ui of the form:

Ui =



±1 0 . . . 0 0
0 ±1 . . . 0 0
...

. . . ∗
...

... ±1
...

...
. . .

...
0 ±1 0
0 ±1


n×n

where there is at most one diagonal entry which is −1 and there is exactly one column with ∗ which
represents an integer value. Note that when the jjth entry of the matrix is −1 then the ∗ must be
in the jth column. Let U1, U2, . . . , Uq be a sequence of matrices corresponding to the sequence of
column operations performed on the matrix A. Thus, we have

A · (U1 · U2 · U3 . . . Uq) = H = [B | 0]

Let U = U1 · U2 · U3 . . . Uq. Note that the det(Ui) = ±1. Hence, det(U) = ±1. Clearly, the entries
in U are integers and are bounded since q is some polynomial in the input size and each column
operation involves multiplying by a small integer. Let Adj(U) be the adjugate of matrix U . Then,

1

U−1 = 1
det(U) · Adj(U). Thus, we conclude that all entries in the matrix U−1 are integral and

bounded.

Our goal is to solve Ax = b for x ∈ Zn . Let y = U−1x which is in Zn if and only if x ∈ Zn.
Consider the following equivalences:

Ax = b⇐⇒ AU(U−1x) = b⇐⇒ (AU)y = b

m
[I | 0]y = B−1b⇐⇒ [B | 0]y = b

Thus, it suffices to solve for y in [I | 0]y = B−1b. If the vector B−1b ∈ Zn, then the set of
all solutions y ∈ Zn is of the form [B−1b, ∗, ∗, . . . , ∗] where the first m entries are B−1b and the
remaining entries are any integers. Otherwise, it has no integral solution. x can be obtained from
y by doing the operation x = Uy. Since, the number of bits required to represent each entries in
the matrices U,U−1, B,B−1 is bounded by polynomial in the input size, all these operations can
be done in polynomial time.

The algorithm can be summarized as follows:

Input : Matrix A ∈ Zm×n and a vector b ∈ Zm.
Output : x ∈ Zn such that Ax = b. If no such x exists then output ‘no solution’.

1. Let U1, U2, . . . , Uq be the sequence of matrices corresponding to the set of column opera-
tions that transforms A to its Hermite Normal form [B | 0].

2. Let U = U1 · U2 · · ·Uq.

3. Let c = [B−1b, 0, 0, . . . , 0] where c is a vector of length n with first m entries B−1b.

4. If c ∈ Zn then output Uc, otherwise output ‘no solution’.

A 1: Algorithm to find integer solutions

Remark: Note that, we only used the lower triangular property of B and hence the other two
conditions from the definition of HNF are not needed for solving this problem. Hence, the overall
algorithm can be simplified i.e. instead of finding Hermite Normal form, it suffices to translate
matrix A into a lower triangular matrix by just doing Gaussian elimination, preserving the integer
span of columns.

2 Finding complex solutions to univariate polynomials

In this section, we will be interested in answering the following question, which is finding a root of
an univariate polynomial up to small additive error.

Q 1. Given a polynomial P (X) ∈ C[X] of degree n and a positive integer k, find β ∈ C such that

2

there exists α ∈ C such that P (α) = 0 and

|α− β| ≤ 2−k

Remark 1: Note that, one way to find root of a polynomial is by Newton’s method but the
accuracy depends on the starting point which is a delicate issue.

Remark 2: Finding approximate root of a polynomial has an application to factoring a polynomial
which we will see in later lectures. The high level idea is as follows : First, find an approximate root
of the given polynomial. Since the polynomial is given as a set of coefficients, they are bounded.
We can use this bounded coefficients condition to find a low degree polynomial that has a root close
to the approximate root.

Back to the problem of finding approximate root of a polynomial :

Input size and efficiency : We are given a polynomial P (X) = Xn+a1X
n−1+a2X

n−2+ . . .+an
of degree n in the form of set of coefficients {a0, a1, · · · , an}. Let m be a number such that each
coefficient ai can be represented by m bits. We are interested in solving Q1 in time polynomial in
the input size and k i.e poly(n ·m, k).

Definition 1 (Multiplicative error). An algorithm to estimate a given quantity q is correct up to
multiplicative error of k, if the value its output always lies in a range [qk , kq].

Consider the following set of questions.

Q 2. Given a polynomial P (X) ∈ C[X], z ∈ C and a positive integer k, estimate a distance of z
from a root of P which is closest to z, up to a multiplicative error of k.

Q 3. Given a polynomial P (X) ∈ C[X] and a positive integer k, estimate a distance of 0 from the
root of P closest to 0, up to a multiplicative error of k.

Q 4. Given a polynomial P (X) ∈ C[X]and k, find two real numbers r and s such that r
s ≤ k, and

both the cases are true:

1. All roots of P are at most r in absolute value

2. Some root of P is at least s in absolute value.

As an intermediate step in finding a root of a polynomial, we will use an algorithm that solves Q2
for a certain value of k. We will show the following reductions,

Q2 =⇒ Q3 =⇒ Q4 (1)

where Qi =⇒ Qj means it suffices to solve Qj in polynomial time in order to solve Qi in polynomial
time. At the end, we will show how to solve Q4. First let’s see how solving Q4 suffices to solve Q2:

• Q2 =⇒ Q3 : Given P (X) and z as in Q2, consider the polynomial Q(X) = P (X) − z. By
construction, the distance of z form a root of P (X) which is closest to z is same as distance
of origin from a root of Q(X) which is closest to the origin.

3

• Q3 =⇒ Q4 : Given a polynomial P (X) as in Q3, consider the polynomial Q(X) = P (1
X)·Xn.

If α is a root of P (X) then 1
α is a root of a polynomial Q(X). For a polynomial Q(X), given

k, if we can find real numbers r and s that satisfy two cases from Q4 (which is same as
maximum absolute value of a root of P (X) lies in the interval [s, r]), then we can also find
two real numbers, namely r′ = 1

r and s′ = 1
s , such that following is true:

1. All roots of P (X) is at least r′ in absolute value.

2. Some of P (X) is at most s′ in absolute value.

Thus, if we can solve Q4 with certain accuracy (for a parameter k), then we can also find two
reals, r′, s′ such that s′

r′ ≤ k, such that above two statements are true. It means we can find
two real numbers, r′ and s′ such that the minimum root of P (X) (in absolute value) lies in
the interval [r′, s′]. Since s′

r′ ≤ k, r′ is an estimate of distance of origin from the root closest
to it up to multiplicative error of k.

Rest of the section is to solve Q4. We first start with a following claim that give an approximate
estimate of the absolute value of the largest root of a polynomial:

Claim 2. Let P (X) = Xn + a1X
n−1 + a2X

n−2 + . . .+ an and let A = maxi |ai|
1
i then we have

1

n
A ≤ absolute value largest root of P (X) ≤ 2A.

Proof. Let α be any root of P . We know that

αn = −
n∑
i=1

aiα
n−i

Therefore, for some i ∈ [n],

|aiαn−i| ≥
|αn|
2i

=⇒ |ai| ≥
|αi|
2i

=⇒ |α| ≤ 2 · |ai|
1
i

Since the value of A is maxi |ai|
1
i , |α| ≤ 2 ·A. Hence, for every root α of P (X), we have |α| ≤ 2 ·A

Let α1, α2, · · · , αn be the roots of P (X). To prove the left inequality, suppose for contradiction,
assume that all roots αi of P satisfy |αi| ≤ u · A. Then, by comparing the coefficients from the
following identity,

P (X) =
∏
i∈[n]

(X − αi) =Xn +

 ∑
1≤i≤n

αi

Xn−1 +

 ∑
1≤i1<i2≤n

αi1 · αi2

Xn−2 + . . .

+

 ∑
1≤i1<i2<...<ik≤n

αi1 · αi2 · · ·αik

Xn−k + . . .+
∏

1≤i≤n
αi

4

we have,

|a1| ≤ n(u ·A)

|a2| ≤
(
n

2

)
(u ·A)2

...

|ai| ≤
(
n

i

)
(u ·A)i =⇒ A ≥

(
ai(
n
i

)
ui

) 1
i

If ui
(
n
i

)
> 1 for all i ∈ [n] then it contradicts the definition of A. Hence, if we can choose u = 1

n ,
we have ui

(
n
i

)
≤ 1

ni · ni = 1 .

Thus there exists a root α of P such that |α| ≥ 1
n ·A.

This claim implies that the quantity A is a good estimate of the absolute value of the largest root
of a polynomial P .

Corollary 3. Given a polynomial P (X) = Xn + a1X
n−1 + a2X

n−2 + . . .+ an, we can estimate the
absolute value of the largest root of P (X) upto a multiplicative factor of 2n. The estimate is given

by the quantity A = maxi |ai|
1
i which can be computed in time polynomial in the input size.

Above corollary can be turned into an algorithm to solve Q4 with k = 2n (r and s are the upper
and lower bound from Claim 2). Thus using the reductions(1), given a point, we can estimate a
distance of a root of P (X) closest to it within a multiplicative error of 2n, in time polynomial in
the input size and n.

2.1 The Algorithm

Given a polynomial P (X), the following algorithm (Algorithm A 2) finds a point such that there
is a root of a polynomial at at a distance at most 1

2k
from that point.

2.2 Analysis

In this section we analyze algorithm A 2.

Lemma 4. In iteration i, we are estimating the distance of a root of P (X) from a point which is
at a distance at most B0

2i·8n2 from it.

Proof. It is clear from the algorithm that the size of Bi is B0

2i
. We will show that in every iteration,

there is a root of P (X) inside the region Ri. This suffices to prove the claim since, at iteration i,
we are dividing the region Ri into 8n2 × 8n2 grid, there is a square which contains a root and the
distance of the center point of the square from that root is at most Bi

8n2 = B0

2i·8n2 .

We will prove the existence of a root inside the region Ri using induction on i. The case for i = 0
is true by the bound on B0 and Claim 2. Suppose there is a root inside region Ri. We want to

5

Input : A polynomial P (X) = Xn+a1X
n−1 +a2X

n−2 + . . .+an ∈ C[X] of degree n and error
parameter k
Output : β ∈ C such that |β − α| ≤ 2−k, where α is the root of P (X).

1. Let B0 = 2 ·maxi

(
|ai|

1
i

)
,m = log(B0 · 2k).

2. Define the region R0 = {z : |z| ≤ B0}.

3. Repeat for i = 0 to m:

(a) Divide the region Ri into 8n2 × 8n2 grid.

(b) For each center point of a square in a grid, estimate the distance of a root of P (X)
closest to it (with a multiplicative error of 2n).

(c) Amongst all the center point, let ci be a point where the estimate is the minimum.

(d) Set Bi+1 = Bi
2 . Set Ri+1 = {z : |ci − z| ≤ Bi+1}.

4. Output the point cm from the last iteration.

A 2: Algorithm to find an approximate root of a polynomial

show that there exists a root inside region Ri+1. Consider the ith iteration and a 8n2× 8n2 grid on
Ri. We know that there is a square which contains a root. Let c be the center point of the square.
The actual distance of the root from c is at most Bi

8n2 . Hence the estimate of this distance is at

most Bi
4n . Since ci is a center point with minimum value of estimate (the estimate is at most Bi

4n),

its distance from root is at most Bi
2 . The region Ri+1 is all points at a distance at most Bi

2 from
ci. Hence it contains a root.

Lemma 5 (Correctness). cm is at a distance of at most 1
2k

from a root of P (X).

Proof. From the above claim and the guarantee on the estimation algorithm, in the last iteration,
the minimum distance that we get is at most 2n·B0

2m·8n2 = B0
2m·4n . Suppose this claim is not true - cm

is at a distance greater than 1
2k

form a root closest to it. The estimate algorithm will estimate

the distance to be at least 1
2n·2k (recall the definition of multiplicative error). Plugging the value

of m implies, 1
2n·2k >

B0
2m·4n which is a contradiction to the fact that the estimate from cm is the

minimum in the last iteration.

Having shown the correctness of the algorithm, lets argue about the running time:

Running time: The parameter m is bounded by poly(n · m, k). At each iteration, we are
subdividing the region into O(n4) squares. Estimating the distance from each center point in step
3(b) takes time poly(n,m). Hence, each iteration takes time poly(n,m). Therefore, the overall
running time is bounded by poly(n · m, k) as required. In particular, we get a polynomial time
algorithm for k = poly(n).

6

