
Lecture 2: Continued fractions, rational approximations

Algorithmic Number Theory (Fall 2014)
Rutgers University
Swastik Kopparty

Scribe: Cole Franks

1 Continued Fractions

We begin by calculating the continued fraction representation of a real number. Let α be a real
number. Then

α = bαc+
1

α1
,

α1 = bα1c+
1

α2
,

...

αn−1 = bαn−1c+
1

αn

where αi is greater than one for i ∈ {1, . . . , n}. Let a0 := bαc, and ai := bαic. At some point αN
may be an integer, in which case this process terminates and α is rational. In that case, we simply
define an = 0 for all n > N , and αn is undefined for n > N . Note that an ≥ 1 for all 1 ≤ n ≤ N . If
α is irrational, the process will never terminate, so we don’t have to worry about the two previous
lines. Note that ai, αi ≥ 0 for all i ≥ 1. By plugging each equation into the one above, we see that

α = a0 +
1

a1 +
1

. . .

...

an−1 +
1

αn

.

The nth convergent of α, provided n ≤ N (if N exists), is given by

cn = a0 +
1

a1 +
1

. . .

...

an−1 +
1

an
.
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If n ≥ N , then the nth convergent of α is simply

cn = a0 +
1

a1 +
1

. . .

...

aN−1 +
1

aN
.

= cN

The list [a0, . . . ] is the continued fraction representation of α.

Lemma 1. The convergents are given by cn = pn
qn

where[
pn+1 pn
qn+1 qn

]
=

[
pn pn−1
qn qn−1

] [
an+1 1

1 0

]
or

pn+1 = pnan+1 + pn−1

qn+1 = qnan+1 + qn−1

with p0 = a0, q0 = 1, p1 = a0a1 + 1, q1 = a1.

Note that for all i ≥ 0, qi > 0. In particular, qi is strictly monotonically increasing until ai+1 = 0,
or when i = N .

Proof. First we claim that for any n ≥ 1 and a formal variable Z we have

pnZ + pn−1
qnZ + qn−1

= a0 +
1

a1 +
1

. . .

...

an +
1

Z
,

(1)

which we prove by induction. The base case n = 1 is an exercise. Let n ≥ 1. From the inductive
hypothesis with Z ← an+1 + 1

Z ,

a0 +
1

a1 +
1

. . .

...

an+1 +
1

Z
,

=
pn
(
an+1 + 1

Z

)
+ pn−1

qn
(
an+1 + 1

Z

)
+ qn−1

=
pn (an+1Z + 1) + pn−1Z

qn (an+1Z + 1) + qn−1Z

=
pnan+1Z + pn + pn−1Z

qnan+1Z + qn + qn−1Z
=
pn+1Z + pn
qn+1Z + qn

.

If we substitute Z = an+1 in (??), we get that cn+1 = pn+1/qn+1 as desired.
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Observation 2. Equation (??) is valid even if n > N , for the proof did not use n ≤ N .

Note that

det

([
p1 p0
q1 q0

])
= −det

([
an+1 1

1 0

])
= 1,

so

det

([
pn pn−1
qn qn−1

])
= (−1)n−1.

This implies that pn, qn are relatively prime (because the ideal they generate in Z contains 1), and
so the convergent pn

qn
is already in lowest terms.

2 Approximation

Now we move to the approximation of real numbers by rational numbers. Our aim is to use the
lowest denominator rational number possible and still get a nice approximation.

How good a rational approximation can one get to a given real number α? One trivial rational
approximation to α is a number a

q with ∣∣∣∣α− a

q

∣∣∣∣ ≤ 1

2q
,

(for any q we can simply choose a ∈ Z at a distance at most 1/2 from qα). The following theorem
shows that every α has a pretty good rational approximation:

Theorem 3 (Dirichlet’s Theorem). For every α ∈ R, either α is rational, or else there are infinitely
many distinct rational numbers a

q such that∣∣∣∣α− a

q

∣∣∣∣ < 1

q2
.

Observation 4.

We prove Theorem ?? by proving the following stronger theorem:

Theorem 5. For all Q ∈ N, there is a rational number a
q such that q ≤ Q and∣∣∣∣α− a

q

∣∣∣∣ < 1

qQ
.

Lemma 6. Theorem ?? implies Theorem ??.

Proof of Lemma ??. Take some Q1 ∈ N; by Theorem ?? we can find a1
q1

with∣∣∣∣α− a1
q1

∣∣∣∣ < 1

q1Q1
≤ 1

q21
.
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If a1
q1

= α, then α is rational, and so we are done with Theorem ?? in this case. If not, i.e.∣∣∣α− a1
q1

∣∣∣ > 0, then we can take a new Q2 so large that
∣∣∣α− a1

q1

∣∣∣ > 1
Q2
. Let a2

q2
be the pair guaranteed

by Theorem ?? for Q2. Then

∣∣∣∣α− a2
q2

∣∣∣∣ < 1

q2Q2
<

∣∣∣α− a1
q1

∣∣∣
q2

≤
∣∣∣∣α− a1

q1

∣∣∣∣ ,
so a2

q2
is distinct from a1

q1
. Furthermore,∣∣∣∣α− a2

q2

∣∣∣∣ < 1

q2Q2
≤ 1

q22
.

Continuing this process, we either find that α is rational, or else we find infinitely many a
q as

required in Theorem ??.

This proof, due to Dirichlet, was possibly the first appearance of the Dirichlet Pigeon Hole Principle.

Proof of Theorem ??. If we show that there is some q with qα closer than 1
Q to some integer, then

we can use that integer as our a and be done. Consider {0 mod 1, α mod 1, . . . Qα mod 1}. This
is an Q + 1 element set lying in the interval [0, 1). There must be two in one of the Q intervals[
i−1
Q , iQ

)
, i ∈ {1, . . . , Q}. Hence there exist r, s such that 0 ≤ sα mod 1 − rα mod 1 = (s − r)α

mod 1 < 1
Q , viewed as an element of [0, 1). Then there is an integer, namely that integer directly

below (s− r)α, such that |(s− r)α− a| < 1
Q . Our q is s− r.

Let us now give an algorithm to construct these good approximations. Concretely, the problem we
want to solve is this:

Problem 1. Given a rational number α = r
s and an integer Q, find a

q with |α − a
q | as small as

possible subject to q ≤ Q.

The input size for this problem is O(log r+ log s+ logQ) bits, and we will be interested in getting
an algorithm which runs in time polynomial in this.

Our algorithm will be based on continued fractions (and we will use the notation we used in that
section). It is not true that the solution to our rational approximation problem will be a convergent,
but convergents will help us compute the solution easily.

We begin with a lemma on the sign of cn − α.

Lemma 7. If n is even, cn ≤ α, else cn ≥ α.

Proof. If n > N , this is trivial because cn = α, so we assume that n ≤ N . We proceed by induction
on n (showing the result for all α at the same time).
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The lemma is clearly true for n = 0 (since c0 = a0 = bαc). Now let 1 ≤ n ≤ N − 1, and assume
the lemma holds for n for every α. Then

cn+1 = a0 +
1

a1 +
1

. . .

...

an +
1

an+1
.

= a0 +
1

c′n
,

where c′n is the nth convergent of α1, the number such that α = a0 + 1
α1

. c′n is either at least (if
n is odd) or at most α1 (if n is even) by our inductive assumption. By similar reasoning to that
showing αn > 0 for n > 0, c′n > 0. Then a0 + 1

c′n
is either at least α (if n+ 1 is even) or at most α

(if n+ 1 is odd).

Now we characterize the best rational approximation with denominator ≤ Q.

Theorem 8. Let n be largest number such that qn ≤ Q, and let t be the greatest integer such that
tqn + qn−1 ≤ Q. Then either pn

qn
or tpn+pn−1

tqn+qn−1
is a solution to the rational approximation problem.

Proof. Let L = tpn+pn−1

tqn+qn−1
. We will assume n is even. The proof when n is odd will be very similar.

Because n is even, pn
qn
≤ α and pn+1

qn+1
≥ α. Note that if s = an+1, then spn+pn−1

sqn+qn−1
= pn+1

qn+1
; if s = 0,

then spn+pn−1

sqn+qn−1
= pn−1

qn−1
. As s ranges from 0 to an+1,

spn+pn−1

sqn+qn−1
ranges monotonically from pn−1

qn−1
to

pn+1

qn+1
. This is because

d

ds

(
spn + pn−1
sqn + qn−1

)
=

det

([
pn pn−1
qn qn−1

])
(sqn + qn−1)

2 ;

does not change sign. Hence, L must be between pn+1

qn+1
and pn−1

qn−1
, both of which are at least α.

Hence L is at least α. If r
s is strictly closer to α than both cn and L, then r

s ∈ I = (cn, L). For
contradiction, suppose 0 < s ≤ Q. Then ∣∣∣∣rs − pn

qn

∣∣∣∣ ≥ 1

sqn
,

because r
s 6=

pn
qn

, and similarly ∣∣∣r
s
− L

∣∣∣ ≥ 1

s(tqn + qn−1)
.

Observe that |I| =
∣∣∣pnqn − tpn+pn−1

tqn+qn−1

∣∣∣ = 1
qn(tqn+qn−1)

. Then

|I| = 1

qn(tqn + qn−1)
≥ 1

s(tqn + qn−1)
+

1

sqn
=

1

s

(
1

tqn + qn−1
+

1

qn

)
=

1

s

(
tqn + qn−1 + qn
qn(tqn + qn−1)

)
.

So s ≥ (t+ 1)qn + qn−1 > Q, a contradiction.

Observation 9. We saw in the proof that if n is even, α ∈ (cn, L), and if n is odd, α ∈ (L, cn).
Further, the interval has length exactly 1

qn(tqn+qn−1)
. Then |cn − α| ≤ 1

qn(tqn+qn−1)
≤ 1

qnqn−1
.
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As we noted before, qn increases monotonically until n = N . As a
b is the best approximation with

denominator at most Q for any Q ≥ b, we cannot have qn > b for any n. If so, then qn+1 > b as well.
By Theorem ??, either L or pn+1

qn+1
would at least as good an approximation as a

b with denominator

at most qn+1. For any t > 0, tqn+1 +qn > qn+1, so t = 0. Then L = pn
qn

. This is impossible, because
pn
qn

and pn+1

qn+1
are reduced and therefore neither are equal to a

b . This also applies that N exists for
α if and only if α is rational., i.e. the continued fraction representation of α terminates iff α is
rational.

3 Running Time

It will be of use to bound pn and qn. We already know that qn ≤ b. From Remark ??, we know
that

∣∣pn − qn ab ∣∣ ≤ 1
qn−1

. Hence |pn| ≤
∣∣ qn
b

∣∣ |a|+ 1
qn−1

= O(a).

We know that the n from Theorem ?? is O(log(Q)) because the qn grow at least as fast as the nth

entry of the Fibonacci sequence provided n ≤ N . At each step in the computation of the continued
fraction, we compute the floor of a rational number αi = ri

si
, which is simply the number of times the

denominator of αi goes into the numerator. This is division with remainder, which we know to take
O(log(ri) log(si)) operations. We know αi = 1

αi−1−bαi−1c , which has denominator the remainder of

ri−1 under division by si−1 (which is strictly smaller than si−1) and numerator si−1. As α0 = α = a
b ,

we can conclude by induction that ri, si ≤ max(a, b) and so the number of operations per step is
certainly at most O((log(a) + log(b))2). Finding t can take at most O(log(Q)2) steps, as we find
it by division with remainder of Q − qn−1 by qn−1. t is at most an+1, which is at most qn+1 ≤ b.
pn, pn−1 = O(a). Taken together, finding L must take O(poly(log(a), log(b), log(Q))). Finding
whether L or cn is closer to α can also certainly take at most O(poly(log(a), log(b), log(Q))), and
finding the continued fraction is also O(poly(log(a), log(b), log(Q))). Hence the entire running time
must be O(poly(log(a), log(b), log(Q))).
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