
Lecture 15: The Agrawal-Kayal-Saxena Deterministic Primality Test-
ing Algorithm (continued)

Algorithmic Number Theory (Fall 2014)
Rutgers University
Swastik Kopparty

Scribe: Prachi Pendse

1 Overview

The last lecture introduced a deterministic primality testing algorithm by Agrawal, Kayal, and
Saxena and showed that it ran in time polynomial in log(n), where n is the number being tested.
This lecture will prove the correctness of the algorithm. It is easy to see that if a number n is
prime, the algorithm always outputs prime as all identities that AKS checks hold.

In order to prove correctness in the other direction, we will suppose n is composite and that the
algorithm outputs prime. This means that all identities must have held. We will prove relationships
between these identities in the next section. In the last section we show that these relationships
lead to a contradiction, proving the correctness of the algorithm.

2 Setup

2.1 The AKS Algorithm

1. On input n, if n is a perfect power, output composite.

2. Set R = log5(n) and A = log6(n).

3. If n has any factors ∈ (1, R), output composite.

4. For each r ∈ [R]
For each a ∈ [A]

Check that (X + a)n ≡ (Xn + a) (mod n,Xr − 1) by repeated squaring

5. If all identities hold, output prime, else composite.

From last time, we know ∃r ≤ R such that ordr(n) ≥ log2(n) and that this r is relatively prime to
n. Now suppose n is composite and let p be a prime dividing n such that r - (p − 1). Since the
algorithm outputs prime we know (X + a)n ≡ (Xn + a) (mod p,Xr − 1),∀a ∈ [A].

Definition 1. Let

S = {Z + a ∈ Fp[Z] : a ∈ [A]}

T = {n, p}

µr = {α ∈ Fp such that αr = 1}, the rth roots of unity in Fp.

1

We now come to the most important definition of this analysis.

Definition 2 (Commuting). For a polynomial Q(Z) ∈ Fp[Z] and an integer m ∈ Z, we say that Q
and m commute if:

∀α ∈ µr, Q(α)m = Q(αm).

Lemma 3. If Q1 commutes with m and Q2 commutes with m, then Q1 ·Q2 commutes with m.

Proof. We are given that for all α ∈ µr, Q1(α)m = Q1(α
m) and Q2(α)m = Q2(α

m).

Thus, for all α ∈ µr,

Q1 ·Q2(α
m) = Q1(α

m) ·Q2(α
m) = Q1(α)m ·Q2(α)m = (Q1 ·Q2(α))m.

Thus Q1 ·Q2 commutes with m.

Lemma 4. If Q commutes with m and Q commutes with m′ then Q commutes with m ·m′.

Proof. We are given that for all α ∈ µr, Q(α)m = Q(αm) and for all α ∈ µr, Q(α)m
′

= Q(αm′
).

We have the following simple observation: if α ∈ µr, then αm ∈ µr.

Thus for every α ∈ µr, we get:

Q(αm·m′
) = Q((αm)m

′
) = Q(αm)m

′
= Q(α)m·m

′
.

Hence Q commutes with m ·m′.

Definition 5. Let

S = the multiplicative closure of S.

T = the multiplicative closure of T.

G = T (mod r) = {ni · pj ∈ Z∗r} ⊆ Z∗r.

t = |G|.

By Lemmas 2 and 3, each Q ∈ S and each m ∈ T commute.

Observe that because n and p are relatively prime to r, G is a subgroup of Z∗r . Since ordr(n) ≥
log2(n), t ≥ log2(n).

3 Proof of Correctness of AKS Algorithm

3.1 Strategy

1. Fix α0 ∈ µr ⊆ Fp.

2. Find m̃ 6= 0, m̃ small, such that ∀Q(Z) ∈ S, Q(α0)
m̃ = 1.

3. Find many Q(Z) ∈ S such that Q(α0) are all distinct.

4. This gives a contradiction: it gives too many roots for the equation Y m̃ = 1.

2

3.2 Finding many distinct m̃th roots of unity

We now implement this strategy. Fix α0 ∈ µr to be a primitive rth root of 1.

Lemma 6. There exists an integer m̃ ≤ n2(
√
t+1), m̃ 6= 0, such that ∀Q(Z) ∈ S, Q(α0)

m̃ = 1.

Proof. It suffices to find nonzero m, m′ ∈ T with m, m′ small and m m′ such that ∀Q(Z) ∈ S,
Q(α0)

m = Q(α0)
m′

. Setting m̃ = m−m′ satisfies the conditions of the lemma.

Look at nipj (mod r) : i, j ≤ (
√
t+ 1). Since n is composite, ∃nipj = m and ni

′
pj

′
= m′, m,m′ ≤

n2(
√
t+1) such that m ≡ m′ (mod r) and m 6= m′. Assume without loss of generality that m > m′.

∀α ∈ µr, ∀Q(Z) ∈ S it holds that

Q(α)m = Q(αm) = Q(αm′
) = Q(α)m

′
.

Thus Q(α0)
m = Q(α0)

m′∀α ∈ µr and ∀Q(Z) ∈ S.

Since Q is a product of linear polynomials, α0 is a primitive rth root of unity, and r - (p − 1), we
also see that Q(α0) 6= 0.

Because Q(α0)
m = Q(α0)

m′
and Q(α0) 6= 0, we can divide through to get Q(α0)

m−m′
= 1. Taking

m̃ = m−m′ proves the lemma.

Lemma 7. Let Q(Z) and Q′(Z) be distinct polynomials in S of degree less than t. Then Q(α0) 6=
Q′(α0).

Proof. Suppose Q(α0) = Q′(α0) for distinct polynomials Q,Q′ ∈ S of degree less than t.

Then ∀m ∈ T ,
Q(αm

0) = Q(α0)
m = Q′(α0)

m = Q′(αm
0).

So Q and Q′ agree on every αm
0 for m ∈ T . Counting the number of these αm

0 gives

|{αm
0 : m ∈ T}| = |T (mod r)| = |G| = t.

But Q and Q′ had degrees less than t, so they cannot agree on the t different points αm
0 . Thus it

is not possible that Q(α0) = Q′(α0) for any distinct polynomials Q,Q′ ∈ S of degree less than t,
proving the lemma.

3.3 Deriving a Contradiction

Observe that |{the set of polynomials in S of degree < t}| ≥
(
A+ t− 1

t− 1

)
.

We also note that m̃ ≤ n2(
√
t+1) < n3

√
t = 23

√
t log(n) and log2(n) ≤ t.

3

Lemma 7 states that the

(
A+ t− 1

t− 1

)
distinct polynomials Q(Z) ∈ S all have distinct values for

Q(α0). By Lemma 6, all these distinct values are m̃’th roots of unity.

Thus there are

(
A+ t− 1

t− 1

)
distinct m̃th roots of unity.

Because A = log6(n)� log5(n) = R ≥ r ≥ t, we can safely assume that A > 8t.

Thus

(
A+ t− 1

t− 1

)
≥
(
A

t

)t

> 8t ≥ 23
√
t log(n) ≥ m̃.

Since

(
A+ t− 1

t− 1

)
> m̃, there can not be so many distinct m̃th roots of unity, a contradiction.

This completes the proof of the correctness of the AKS deterministic primality testing algorithm.

4

