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1 Deterministic Factoring of 1-Variable Polynomials

Let q = pe and f ∈ Fq[x] a polynomial of degree d. Last class we saw a randomized algorithm of
Berlekamp’s which factored f in expected time poly(log q, d). This class we will show a deterministic
algorithm also due to Berlekamp which runs in time poly(p, log q, d).

First we will show how to factor in poly(q, d) time, and then modify our method slightly to get the
desired run time. To do this we need an important lemma:

Lemma 1. Given f(x) ∈ Fq[x] squarefree, f(x) is irreducible iff the only α satisfying αq ≡ α
mod f are the constants α ∈ Fq

Proof. If f is irreducible then Fq[x]/f(x) is a field containing Fq (in particular it is isomorphic to
Fqd). So we have that there are at most q solutions to the polynomial xq−x, and these are already
known to be the constants α ∈ Fq.

For the reverse direction if f is not irreducible, say f(x) =
∏n
i=1 fi(x) where the fi are irredcuible,

then by the Chinese Remainder Theorem we have that Fq[x]/f(x) ∼=
⊕n

i=1 (Fq[x]/fi(x)). Therefore
we have exactly qn solutions of the form (α1, α2, . . . αn) where for all i, αi ∈ Fq.

Observation 2. xq − x is an Fq-linear function on Fq[x]/f , so its kernel forms a vector space,
which the above proof shows to have dimension n where n is the number of irreducible factors of
the polynomial f .

We use this observation in making the following algorithm for factoring f in poly(q, d) time:

Algorithm 1 for factoring polynomials over Fq:

0. Make f squarefree

1. Find a basis for the space V = {a(x) | deg(a(x) < d, a(x)q ≡ a(x) mod f}. (Note we
are solving an Fq-linear system of equations in the coefficients of the polynomial a(x)).

2. Let a(x) be a basis vector of V . We know that f(x) divides a(x)q − a(x) =∏
α∈Fq

(a(x)− α) by the definition of V . Therefore for some α ∈ Fq we have gcd(a(x)−
α, f(x)) 6= 1, and so after trying all q distinct possibilities for α we are guaranteed to
have found some factor of f of the form fi = gcd(a(x)− α, f(x)) 6= 1.
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We showed in the previous class how to perform step 0 in poly(log q, d) time. Step 1 can be done
in poly(log q, d) by using fast modular exponentiation. In particular one can in poly(log q, d) time
compute for each i < d the remainder polynomial ri(x) := (xi)q mod f(x) and so we have that if
a(x) =

∑d−1
i=0 aix

i then

a(x)q − a(x) ≡ 0 mod f ⇐⇒
d−1∑
i=0

aix
i ≡

(
d−1∑
i=0

aix
i

)q
≡

d−1∑
i=0

airi(x) mod f

Where note we have used the facts that the coefficients ai are in Fq and that deg(a) < d.

Lastly for step 2 we needed to try taking a gcd over Fq[x] of possibly q polynomials of degree at
most d− 1. So this was done in poly(q, d) time.

Step 2 was the slowest step, so we improve it by making the following modification to our algorithm:

Algorithm 2 for factoring polynomials over Fq:

0. Make f squarefree

1. Find a basis for the space V = {a(x) | deg(a(x) < d, a(x)p ≡ a(x) mod f}. So if we rep-
resent Fq as an Fp vector space, then let M be the matrix of the Fp-linear transformation
x 7→ xp − x on Fq. We can now express the elements of V as the solutions of

a(x) ≡ a(x)p ≡

(
d−1∑
i=0

aix
i

)p
≡

d−1∑
i=0

api x
ip ≡

d−1∑
i=0

(Mai)ri(x) mod f

2. Let a(x) be a basis vector of V . We know that f(x) divides a(x)p − a(x) =∏
α∈Fp

(a(x)− α) by the definition of V . So for some α ∈ Fp we have gcd(a(x)−α, f(x)) 6=
1, and so after trying all p distinct possibilities for α we are guaranteed to have found
some factor of f of the form fi = gcd(a(x)− α, f(x)) 6= 1.

We note that step 1 is similar to step 1 before, but now instead of solving an Fq linear sys-
tem of equations, we solve an Fp linear system as both the right and left terms of the equation

a(x) ≡
∑d−1

i=0 (Mai)ri(x) mod f are Fp linear. So this step is still solved in poly(log p, log q, d) =
poly(log q, d) time. Step 2 is almost unchanged but done over Fp rather than Fq so it now takes
only poly(p, log q, d) time. Therefore the runtime of the algorithm as a whole is poly(p, log q, d).
Lastly we note that for step 2 to work, in place of the polynomial xp − x any easily factoriable
sparse polynomial with few roots would have sufficed.

2 Factoring 2-Variable Polynomials

Recall the following ”web of analogies” between integers/rationals and finite fields:

Z↔ Fq[T ] Q↔ Fq(T )

Z[X]↔ Fq[T,X] Q[X]↔ Fq(T )[X]
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The basic idea for factoring F (T,X) will be to first fix T = t0. We will find a root x0 of the single
variable polynomial F (t0, X) and then find a Taylor expansion of the curve of zeroes of F (T,X)
near (t0, x0). After computing the power series of this curve to high precision we will identify the
actual curve, and thereby find a factor of F .

High Level Overview of Algorithm for Bivarate Factoring:

1. Find t0 such that F (t0, X) (is squarefree) has no repeated roots in X.

2. Find a root x0 of F (t0, X) (note: x0 might not be in Fq, but rather some extension)

3. Find a Taylor Series X(T ) = a0 + a1(T − t0) + a2(T − t0)2 . . . such that F
(
T,X(T )

)
= 0

in Fqn [[T − t0]].

4. Use the Taylor Series X(T ) of a curve of zeroes of F to find an associated factor of F .

Note that our Taylor series in step 3 will not ”approximate” an actual function in any sense other
than being correct up to, say, the first 100 terms, which is to say it will be correct modulo T 100.

Given g(X) ∈ Fq[X] how do we tell if g is squarefree?

1. If g′(X) = 0 then g is a perfect pth power, and we’ll do something else.

2. If g′(X) 6= 0 then gcd(g(x), g′(x)) has degree > 0 iff g(X) is not squarefree (and we have
already found a factor)

To use this criterion effectively we will find a polynomial disc in the coefficients of the polynomial
g so that disc(g) = 0 if and only if gcd(g(x), g′(x)) = 1 (and therefore g squarefree) Note that for
for any polynomials g =

∑d
i=0 gix

i and h =
∑`

i=0 hix
i we have deg(gcd(g, h)) > 0 iff there exists

a(x), b(x) of degrees < `, d respectively such that a(x)g(x)+b(x)h(x) = 0 (as the degree of lcm(g, h)
will have degree `+ d− gcd(g, h)).

Definition 3. Given g, h ∈ Fq[X] let M be the d+ `× d+ ` matrix

M :=



g0 g1 g2 . . . . . . gd 0 . . . . . . . . . . . . 0
0 g0 g1 . . . . . . . gd−1 gd 0 . . . . . . . 0
0 0 g0 . . . . . . . gd−2 gd−1 gd 0 . . . 0
... 0

. . .
. . .

. . . 0
. . .

0 . . . . . . . . . . . . 0 g0 . . . . . . . . . . . . . . . . . . gd
h0 h1 h2 . . . . . . h` 0 . . . . . . . . . . . . 0
0 h0 h1 . . . . . . . h`−1 h` 0 . . . . . . . 0
0 0 h0 . . . . . . . h`−2 h`−1 h` 0 . . . 0
... 0

. . .
. . .

. . . 0
. . .

0 . . . . . . . . . . . . 0 h0 . . . . . . . . . . . . . . . . . . h`


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We define the Resultant of g and h to be Resultant(g, h) = det(M) and define the discriminant of
g to be disc(g) = Resultant(g, g′).

Observation 4. Note that if g is a quadratic ax2+bx+c then disc(g) = b2−4ac. The discriminant
isn’t going to be a practical way to check if g is squarefree, but it will be a helpful theoritcal tool.
In general disc(g) is actually quicker to compute than determinants by finding the roots of g and
using a special formula for the discriminant.

Lemma 5. Resultant(g, h) = 0 iff deg(gcd(g, h)) > 0. Similarly disc(g) 6= 0 iff g is squarefree.

Proof. For a vector v ∈ Rd+` let a(x) =
∑`

i=1 vix
i−1, and b(x) =

∑d
i=1 vv`+i

xi−1. Note v solves the
system of equations MTv = 0 iff for all j we have

0 =
d+∑̀
i=1

Mijvi =
∑̀
i=1

gj−ivi +
`+d∑
i=`+1

hj−(i−`)v`+i =
`−1∑
i=0

gj−iai−1 +
`+d∑
i=`

hj−ibi−1

⇐⇒ [a(x)g(x) + b(x)h(x)]
∣∣
xj−1 = 0

So we see that the existance of a nonzero vector v solving MT v = 0 is equivalent to finding a, b of
degree less than ` − 1, d − 1 respecitvely satisfying a(x)g(x) + b(x)h(x) = 0. But this property is
equivalent to deg(gcd(g, h)) > 0. Therefore we have that Resultant(M) = 0 iff deg(gcd(g, h)) > 0.
Similarly disc(g) = 0 iff deg(gcd(g, g′)) > 0. But we also know that deg(gcd(g, g′)) = 0 iff g is
squarefree so we are done.

So, considering F (T,X) as a univariate polynomial FT (X) ∈ Fq(T )[X], we have

F (T,X) =

d∑
i=0

Fi(T )Xi

F ′(T,X) =
d∑
i=1

iFi(T )Xi−1

Where Fi is some polynomial in T with degree less than d. We compute the discriminant of FT to
be

disc(FT ) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

F0 F1 F2 . . . . . . Fd 0 . . . . . . . . . . . . 0
0 F0 F1 . . . . . . . . Fd−1 Fd 0 . . . . . . . 0
0 0 F0 . . . . . . . . Fd−2 Fd−1 Fd 0 . . . 0
... 0

. . .
. . .

. . . 0
. . .

0 . . . . . . . . . . . . . . 0 F0 . . . . . . . . . . . . . . . . . . . Fd
F1 2F2 3F3 . . . dFd 0 . . . . . . . . . . . . . . . . . . . 0
0 F1 2F2 . . . . . . . . dFd 0 . . . . . . . . . . . . 0
0 0 F1 . . . . . . . . . . . . . . . Fd 0 . . . . . . 0
... 0

. . .
. . .

. . . 0
. . .

0 . . . . . . . . . . . . . . . . . . . 0 F1 . . . . . . . . . . . . dFd

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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Observation 6. disc(FT (X)) = disc(F )(T ) is a univariate polynomial in T of degree at most
d(2d− 1).

As long as disc(F )(T ) is not the zero polynomial there exists some t ∈ Fq so that disc(F )(t) 6= 0.
In fact as deg(disc(F )(T )) ≤ (2d− 1)d we have to check at most (2d− 1)d+ 1 values of t before we
are guaranteed to find disc(F )(t) 6= 0.

We also know from the above lemma that disc(F )(T ) is the zero polynomail in T iff F (T,X) is
squarefree in Fq(T )[X].

What have we shown so far? If F is squarefree then after less than (2d− 1)d+ 1 tries there will be
some appropriate t0 so that F (t0, X) is a squarefree univariate polynomial.

In the next class we will finish up bivariate polynomial factoring, and time permitting mention
multivariate factoring and primality testing.
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