Homework 1

Algorithmic Number Theory (Fall 2014)
Rutgers University
Swastik Kopparty

Due Date: November 19, 2014

Answer any 2 questions.

Questions

1. Recall the Gauss, algorithm for finding short vectors in a 2 dimensional lattice L (here n €
(0,1]). We assume L C Z", and that L is specified by giving as input a basis {a, b}, where all
coordinates of a,b are at most n bits long.

(a) Assume [[a] < |[bl]
(b) Repeat the following:
<a7b>J_

[lall?

ii. Setb=b—m-a.

i. Define m = |

iii. Swap(a, b)
Until Jal] = - [}b].
(c) Output b.

We already saw that Gauss; finds THE shortest vector in L, and that Gaussp g halts in poly(n)
steps (but only finds an approximately shortest vector of L).

Show that for every L, Gauss; halts at most one step after Gaussg g halts. Thus Gauss; is also

an efficient algorithm.

2. We will now see an algorithm that approximately solves the closest vector problem (CVP).
Let L C R™ be a given lattice (w.l.o.g. it is full-rank) , and let y € R™. Our goal is to find
x € L such that ||z — y|| is almost as small as possible.

The algorithm is as follows:

e Let by,...,b, be an LLL-reduced basis for L. (In particular, in the Gram-Schmidt

orthonormal coordinate system (uy,...,u,) € (R™)", the column vectors by, ..., b, form
an upper triangular matrix. Let dy, ..., d, be the diagonal entries of this upper triangular
matrix.)

e Find z € L such that for each i € [n]:

d;
(@, ui) — (Y, ui)| < 5

e Output this z.

Show how to implement the second step of the algorithm efficiently.

Show that the x output by the algorithm satisfies:

_yll <20 i —qll.
lz =yl < min |z — y|

. Let L be a given lattice in Z%, specified by a basis, where each basis vector has each coordinate
at most n bits long. For a given p € [1,00) U {oco}, we want to find the z € L\ {0} that
minimizes ||z||,. Give a poly(2P°¥(9) n) time algorithm to do this.

Assuming the result of the previous problem, also show how to solve the CVP problem exactly

under these norms.

Use your method to give a polynomial time algorithm for the following problem. Given N € Z
and x € Q as input, find a,b, c € Z with |al, |b|, |c| < N such that

|z — (a+ bV2 + ¢(V/2)?)]

is as small as possible.

(The running time should be polynomial in log N and the number of bits in the numerator
and denominator of z).

. Problem Updated on Nov. 8. Unfortunately the previous problem was too simple
to be correct. We will now see the p-adic analogue of our algorithm to factor a given
polynomial F(X) € Q[X]|. The overall strategy is the same: find an & which is sufficiently
“close” to a root « of F'(X), and then find a small-coefficient polynomial of low degree which
almost-vanishes at &. What changes is the notion of closeness; we will use the p-adic metric
instead of the standard absolute difference metric.

(a) Let F(X) € Z[X] be a polynomial of degree n, where each coefficient is an n-bit integer.
Show that there is a prime p < 2P°Y(")and an integer a < p, such that:
e F(a) =0 mod p,
e F'(a) #0 mod p,
e The leading coefficient of F'(X) is not divisible by p.

(I don’t know how one can find such p and a efficiently. Under the GRH, using the

“effective Chebotarev density theorem”, one can show that with probability > m,

a large random integer p ~ 2P°Y(") will be a prime be such that F(X) has at least one
root @ in Fp. This a can then be found by Berlekamp’s algorithm.)

Assume for the next few parts of this problem that such p and a have been given to you.
In the last (optional) part of this problem, you will see how one can do away with this
assumption.

(b) Let a, p be as above. Give a poly(n, k) time algorithm to find an integer aj, € [0, p¥) such
that a = @ mod p, with F(az) =0 mod p*.
(c) Let k = poly(n).
If F' is reducible, show that there exists nonzero G(X) € Z[X] such that:
e G(ar) =0 mod pF.
e cach coefficient of G(X) is at most 27* in absolute value.

Conversely, if such a nonzero G(X) € Z[X] exists, show that G(X) and F(X) have a
nontrivial GCD in Q[X].

(d) Show that we can efficiently determine if such a G(X) as above exists, and if it does exist,
we can find it efficiently. Use this to complete the description of the efficient factoring
algorithm for polynomials in Q[X] (assuming that we are given a,p as help).

(e) Optional: One way to use the above ideas to get a self-contained efficient algorithm
for factoring polynomials over Q is as follows. You should think about what it takes to
implement this algorithm efficiently.

We first find a prime p < n!%, an integer ¥ < n and an element o € F,x such that, if
F(X) is the reduction of F'(X) mod p, then we have:

e F(a)=0,

o F'(a) #0,

o deg(F(X)) = deg(F(X)),
Show that this can be done efficiently.
We then try to use « to find a root of F(X) in some field L D Q. This field L will play
the role of the complex numbers in the factoring algorithm from class. L will also be
similar to C in the sense that L will be a finite algebraic extension of the completion
of Q according to some metric (just like C is an extension of R, which in turn is the
completion of QQ according to the usual metric).
Let h(T) € Fp[T] be a monic irreducible polynomial of degree k (so that Fx = F,[T]/h(T)).
Let h(T') € Z[T] be a monic irreducible polynomial of degree k such that h(7) mod p
equals A(T).
Let Q, be the field of p-adic numbers, Z, be the ring of p-adic integers. Let L be the
extension of Q, given by Qp[T]/h(T). Let R be the integral closure of Z, in L. Let p be
the unique prime ideal of R. Let 7 € p \ p?>. We have p = 7 - R.
Note that R/p =F,r. Let a € R be such that @ mod p = a. Then we have:

e F(a)=0 mod (m).

e F'(a) #0 mod (r).

e The leading coefficient of F'(X) € R[X] is not divisible by 7.
We can then use Hensel lifting to find, for each k, a, € R s.t. F(a) =0 mod (7").
Having found ay, for large enough k& = poly(n), we then search for a polynomial G(X) €
Z[X] st. G(ag) = 0 mod (7*), each coefficient of G is at most 27°, and deg(G) <
deg(F). If such a G exists, it is a factor of F/(X).

5. Suppose p is a given prime, g is a given generator of F), and you have access to an algorithm
Apg(x). Apg has the property that for at least 0.01 fraction of the z € F, we have:

g9 = 2 mod p,

(i-e., for 0.01 fraction of the z € Iy, Ap 4() is the discrete log of = to the base g).

Give a poly(logp) time randomized algorithm (which can invoke A, , as a subroutine) which
computes the discrete log of a given x € F), for every z € F,.

6. Let pu(n) be the Mobius function (i.e., u(n) = (—1)# Primes dividing ¢ s squarefree,
wu(n) = 0 otherwise).

A conjecture of Sarnak says that for every polynomial time computable function f : N —
[_17 1]7

=o(1).

1 N
y 2 (o)

(In words: no polynomial time computable function can correlate with u; this would express
a strong form of pseudorandomness of p). Note that if factoring can be done in polylog(n)
time, then this conjecture is false.

Put in your best effort and find a polylog(n) time computable f(n) so that ‘% SN F(n)u(n)
is as large as possible (as a function of V). You can use any fact you want about primes. You
may also want to look up “smooth numbers”.

In the other direction, if we insist that f satisfies: |+ SN f(n),u(n)‘ = Q(1), we can try to

come up with such an f which can be computed as fast as possible. How low can you make
the running time of f. You should able to make it n¢ for every ¢ > 0, and even faster as the
course progresses.

