
Homework 1

Algorithmic Number Theory (Fall 2014)
Rutgers University
Swastik Kopparty

Due Date: November 19, 2014

Answer any 2 questions.

Questions

1. Recall the Gaussη algorithm for finding short vectors in a 2 dimensional lattice L (here η ∈
(0, 1]). We assume L ⊆ Zn, and that L is specified by giving as input a basis {a, b}, where all
coordinates of a, b are at most n bits long.

(a) Assume ‖a‖ ≤ ‖b‖
(b) Repeat the following:

i. Define m = d 〈a,b〉‖a‖2 c.
ii. Set b = b−m · a.

iii. Swap(a, b)

Until ‖a‖ ≥ η · ‖b‖.
(c) Output b.

We already saw that Gauss1 finds THE shortest vector in L, and that Gauss0.9 halts in poly(n)
steps (but only finds an approximately shortest vector of L).

Show that for every L, Gauss1 halts at most one step after Gauss0.9 halts. Thus Gauss1 is also
an efficient algorithm.

2. We will now see an algorithm that approximately solves the closest vector problem (CVP).
Let L ⊆ Rn be a given lattice (w.l.o.g. it is full-rank) , and let y ∈ Rn. Our goal is to find
x ∈ L such that ‖x− y‖ is almost as small as possible.

The algorithm is as follows:

• Let b1, . . . , bn be an LLL-reduced basis for L. (In particular, in the Gram-Schmidt
orthonormal coordinate system (u1, . . . , un) ∈ (Rn)n, the column vectors b1, . . . , bn form
an upper triangular matrix. Let d1, . . . , dn be the diagonal entries of this upper triangular
matrix.)

• Find x ∈ L such that for each i ∈ [n]:

|〈x, ui〉 − 〈y, ui〉| ≤
di
2
.

• Output this x.

1

Show how to implement the second step of the algorithm efficiently.

Show that the x output by the algorithm satisfies:

‖x− y‖ ≤ 2O(n) ·min
z∈L
‖z − y‖.

3. Let L be a given lattice in Zd, specified by a basis, where each basis vector has each coordinate
at most n bits long. For a given p ∈ [1,∞) ∪ {∞}, we want to find the x ∈ L \ {0} that
minimizes ‖x‖p. Give a poly(2poly(d), n) time algorithm to do this.

Assuming the result of the previous problem, also show how to solve the CVP problem exactly
under these norms.

Use your method to give a polynomial time algorithm for the following problem. Given N ∈ Z
and x ∈ Q as input, find a, b, c ∈ Z with |a|, |b|, |c| ≤ N such that

|x− (a+ b
3
√

2 + c(
3
√

2)2)|

is as small as possible.

(The running time should be polynomial in logN and the number of bits in the numerator
and denominator of x).

4. Problem Updated on Nov. 8. Unfortunately the previous problem was too simple
to be correct. We will now see the p-adic analogue of our algorithm to factor a given
polynomial F (X) ∈ Q[X]. The overall strategy is the same: find an α̃ which is sufficiently
“close” to a root α of F (X), and then find a small-coefficient polynomial of low degree which
almost-vanishes at α̃. What changes is the notion of closeness; we will use the p-adic metric
instead of the standard absolute difference metric.

(a) Let F (X) ∈ Z[X] be a polynomial of degree n, where each coefficient is an n-bit integer.

Show that there is a prime p ≤ 2poly(n), and an integer a < p, such that:

• F (a) ≡ 0 mod p,

• F ′(a) 6≡ 0 mod p,

• The leading coefficient of F (X) is not divisible by p.

(I don’t know how one can find such p and a efficiently. Under the GRH, using the
“effective Chebotarev density theorem”, one can show that with probability ≥ 1

poly(n) ,

a large random integer p ≈ 2poly(n) will be a prime be such that F (X) has at least one
root a in Fp. This a can then be found by Berlekamp’s algorithm.)

Assume for the next few parts of this problem that such p and a have been given to you.
In the last (optional) part of this problem, you will see how one can do away with this
assumption.

(b) Let a, p be as above. Give a poly(n, k) time algorithm to find an integer ak ∈ [0, pk) such
that ak ≡ a mod p, with F (ak) ≡ 0 mod pk.

(c) Let k = poly(n).

If F is reducible, show that there exists nonzero G(X) ∈ Z[X] such that:

• G(ak) ≡ 0 mod pk.

• each coefficient of G(X) is at most 2n
2

in absolute value.

2

Conversely, if such a nonzero G(X) ∈ Z[X] exists, show that G(X) and F (X) have a
nontrivial GCD in Q[X].

(d) Show that we can efficiently determine if such a G(X) as above exists, and if it does exist,
we can find it efficiently. Use this to complete the description of the efficient factoring
algorithm for polynomials in Q[X] (assuming that we are given a, p as help).

(e) Optional: One way to use the above ideas to get a self-contained efficient algorithm
for factoring polynomials over Q is as follows. You should think about what it takes to
implement this algorithm efficiently.

We first find a prime p ≤ n10, an integer k ≤ n and an element α ∈ Fpk such that, if
F̄ (X) is the reduction of F (X) mod p, then we have:

• F̄ (α) = 0,

• F̄ ′(α) 6= 0,

• deg(F (X)) = deg(F̄ (X)).

Show that this can be done efficiently.

We then try to use α to find a root of F (X) in some field L ⊃ Q. This field L will play
the role of the complex numbers in the factoring algorithm from class. L will also be
similar to C in the sense that L will be a finite algebraic extension of the completion
of Q according to some metric (just like C is an extension of R, which in turn is the
completion of Q according to the usual metric).

Let h̄(T) ∈ Fp[T] be a monic irreducible polynomial of degree k (so that Fpk = Fp[T]/h̄(T)).
Let h(T) ∈ Z[T] be a monic irreducible polynomial of degree k such that h(T) mod p
equals h̄(T).

Let Qp be the field of p-adic numbers, Zp be the ring of p-adic integers. Let L be the
extension of Qp given by Qp[T]/h(T). Let R be the integral closure of Zp in L. Let p be
the unique prime ideal of R. Let π ∈ p \ p2. We have p = π ·R.

Note that R/p = Fpk . Let a ∈ R be such that a mod p = α. Then we have:

• F (a) ≡ 0 mod 〈π〉.
• F ′(a) 6≡ 0 mod 〈π〉.
• The leading coefficient of F (X) ∈ R[X] is not divisible by π.

We can then use Hensel lifting to find, for each k, ak ∈ R s.t. F (ak) ≡ 0 mod 〈πk〉.
Having found ak for large enough k = poly(n), we then search for a polynomial G(X) ∈
Z[X] s.t. G(ak) ≡ 0 mod 〈πk〉, each coefficient of G is at most 2n

2
, and deg(G) <

deg(F). If such a G exists, it is a factor of F (X).

5. Suppose p is a given prime, g is a given generator of F∗p, and you have access to an algorithm
Ap,g(x). Ap,g has the property that for at least 0.01 fraction of the x ∈ F∗p, we have:

gAp,g(x) = x mod p,

(i.e., for 0.01 fraction of the x ∈ F∗p, Ap,g(x) is the discrete log of x to the base g).

Give a poly(log p) time randomized algorithm (which can invoke Ap,g as a subroutine) which
computes the discrete log of a given x ∈ F∗p for every x ∈ F∗p.

6. Let µ(n) be the Mobius function (i.e., µ(n) = (−1)# primes dividing n if n is squarefree,
µ(n) = 0 otherwise).

3

A conjecture of Sarnak says that for every polynomial time computable function f : N →
[−1, 1], ∣∣∣∣∣ 1

N

N∑
n=1

f(n)µ(n)

∣∣∣∣∣ = o(1).

(In words: no polynomial time computable function can correlate with µ; this would express
a strong form of pseudorandomness of µ). Note that if factoring can be done in polylog(n)
time, then this conjecture is false.

Put in your best effort and find a polylog(n) time computable f(n) so that
∣∣∣ 1N ∑N

n=1 f(n)µ(n)
∣∣∣

is as large as possible (as a function of N). You can use any fact you want about primes. You
may also want to look up “smooth numbers”.

In the other direction, if we insist that f satisfies:
∣∣∣ 1N ∑N

n=1 f(n)µ(n)
∣∣∣ = Ω(1), we can try to

come up with such an f which can be computed as fast as possible. How low can you make
the running time of f . You should able to make it nε for every ε > 0, and even faster as the
course progresses.

4

