Lecture 9: Quantitative thinking

Combinatorial Methods (Winter 2023)
University of Toronto Swastik Kopparty
Scribes: Mingxuan Teng, Elnaz Hessami Pilehrood

1 Counting distinct numbers in a multiplication table

1.1 Summary

By saying quantitative thinking, we want to gain a sense of counting. However, in many cases, it would be so difficult to count the precise number of objects. In those cases, we want to get a well estimation of the number of objects. So in the first half of the lecture, we attacked a famous problem, namely Erdo"s multiplication table problem, to try to "count" the number of distinct integers in a multiplication table.

Note that a multiplication table is simply that:

$*$	1	2	3	\ldots
1	1	2	3	\ldots
2	2	4	6	\ldots
3	3	6	9	\ldots

But before that, we first look at the prime number theorem
Theorem 1. The prime number theorem states that $\pi(N) \sim \frac{N}{\log (N)}$
Definition 2. $A(n)$ represents the number of distinct integers less than or equal to n^{2}.
Definition 3. $\omega(n)$ represents the number of distinct primes less than or equal to n.
Since $\omega(\mathrm{n})$ is very hard to estimate, instead we try to estimate the average of it.

$$
\begin{aligned}
\frac{1}{N} \sum_{n}^{N} \omega(n) & =\frac{1}{N} \sum_{P}^{N}\left\lfloor\frac{N}{P}\right\rfloor \\
& =\frac{1}{N} \sum_{P}^{N} \frac{N}{P}+O(1) \\
& =\sum_{P}^{N} \frac{1}{P}+O\left(\frac{1}{N} \sum_{P}^{N} 1\right) \\
& \approx \log \left(\log (N)+O\left(\frac{\pi(N)}{N}\right) \approx \log (\log (N)+O(1)\right.
\end{aligned}
$$

Note that P represents for prime numbers.

Fact 4. For almost all $n \leq N^{2}, \omega(n)=\log (\log (N))$
We used this fact to estimate $\mathrm{A}(\mathrm{n})$, we want to show $A(n)=O\left(n^{2}\right)$. However, before that, if we consider the following problem:

Problem 1. Consider $\omega(a b), a b \leq N^{2}, a \in[\sqrt{N}, N], b \in[\sqrt{N}, N]$

$$
\begin{equation*}
\omega(a b)=\omega(a)+\omega(b)=\log (\log (N))+\log (\log (N))=2 \log (\log (N)) \tag{1}
\end{equation*}
$$

Then this seems a contradiction to the above fact that for almost all $n \leq N^{2}, \omega(n)=\log (\log (N))$, why? Because $\omega(n)$ is additive but not complete additive, so we can't simply add $\omega(a)$ and $\omega(b)$ to get $\omega(a b)$, as that would cause repeated counting if a is not relatively prime to b. Hence we want to look at a simpler problem.

Definition 5. $A^{*}(n)$: for $n \leq N, n=a * b$, s.t $(a, b)=1$
Fact 6.

$$
A *(n)=O\left(N^{2}\right)
$$

Theorem 7.

$$
A *(n)=O\left(N^{2}\right) \Longrightarrow A(n)=O\left(N^{2}\right)
$$

Proof. Step1: for all $n \in A(N), n=a b$, we have $\mathrm{n}^{*}=\frac{a}{\operatorname{gcd}(a, b)} * \frac{b}{\operatorname{gcd}(a, b)}$ Then we want to look at $\mathrm{A}^{*}\left(\frac{N}{g c d(a, b)^{2}}\right)$, we have $A(n) \leq \sum_{d}^{N} \mathrm{~A}^{*}\left(\frac{N}{d}\right)$, where d is the common factor of a, b.

Step2: By the fact above, we know that $\forall \epsilon>0, \exists \beta>0$, s.t $\mathrm{A}^{*}(\mathrm{M}) \leq \epsilon M^{2}$. Fix ϵ, β, we have $\mathrm{A}^{*}\left(\frac{N}{d}\right)=\sum_{d}^{\frac{N}{\beta}} \mathrm{~A}^{*}\left(\frac{N}{d}\right)+\sum_{d \geq \frac{N}{d}}^{N} \mathrm{~A}^{*}\left(\frac{N}{d}\right)$. Then we have $\mathrm{A}^{*}\left(\frac{N}{d}\right) \leq \sum_{d}^{\frac{N}{\beta}} \frac{N^{2}}{d^{2}}+\sum_{d \geq \frac{N}{d}}^{N} \frac{N^{2}}{d^{2}}$. Then we have $\mathrm{A}^{*}\left(\frac{N}{d}\right) \leq \epsilon N^{2} \sum_{d}^{\frac{N}{\beta}} \frac{1}{d^{2}}+N^{2} \sum_{d \geq \frac{N}{d}}^{N} \frac{1}{d^{2}}$, where $\epsilon N^{2} \sum_{d}^{\frac{N}{\beta}} \frac{1}{d^{2}}$ is a constant which equals to $\epsilon N^{2} * \frac{\pi^{2}}{6}$ and $N^{2} \sum_{d \geq \frac{N}{d}}^{N} \frac{1}{d^{2}} \leq N^{2} * N * \frac{\beta}{N^{2}}=N^{2} * \frac{\beta}{N}$. Hence the whole equation is $O\left(N^{2}\right)$.

2 Counting distinct numbers in an addition table

2.1 Summary

Now what if instead of the multiplication table we looked at the addition table:

+	1	2	3	\ldots
1	2	3	4	\ldots
2	3	4	5	\ldots
3	4	5	6	\ldots

How many different numbers are in this table? We have $|[N]+[N]|=2 N-1$, counting the numbers from 2 to $2 N$.
What about a subtraction table? We have $|[N]-[N]|=2 N-1$, counting the numbers from $1-N$ to $N-1$.

Let G be a finite abelian group with + , and a subset $H \subseteq G$. If $H \leq G$, then we have that $|H+H|=|H|$. Can we think of another subset H^{\prime} of G such that $\left|H^{\prime}+H^{\prime}\right|=\left|H^{\prime}\right|$?

Claim 1: Suppose $|H+H|=|H|$, then H is a coset.
Proof: If $0 \in H$, then $H \subseteq H+H$, so $H+H=H$. If $0 \notin H$, then we can shift to get

$$
|(H-h)+(H-h)|=|H+H|=|H|=|H-h| .
$$

Claim 2: Suppose $|H-H|<\frac{3}{2}|H|$. Then, $H-H$ is a subgroup.
Proof: First we will prove that $\forall x \in H-H,|H \cap(H+x)|>\frac{1}{2}|H|$. We will prove this by contradiction: suppose there exists $x \in H-H$ such that $|H \cap H+x| \leq \frac{1}{2}|H|$. If $y \notin H \cap(H+x)$, then $y \in H$ and $y \notin H+x$. This means $\forall z \in H, y \neq z+x$. Then $y \neq z+a-b$ and $y-a \neq z-b$ for some $a, b \in H$ and all $z \in H$. We have $|H|$ choices for z and $\geq \frac{1}{2}|H|$ choices for y, which is a contradiction.

Now to prove the claim, note that $\forall x, y \in H-H,(H+x) \cap(H+y) \neq \emptyset$. Consider z such that $z \in H+x$ and $z \in H+y$. This means $z=k+x=k^{\prime}+y$, where $k, k^{\prime} \in H$. So, $x-y=k^{\prime}-k \in H-H$.

Freiman-Ruzsa: Suppose we have a finite $A \subseteq \mathbb{Z}$ and $|A+A|=O(|A|)$, then A is a generalized arithmetic progression.

Consider $2^{[N]}=\left\{2^{0}, 2^{1}, 2^{2}, \ldots, 2^{N-1}\right\}$; we have $\left|2^{[N]} \cdot 2^{[N]}\right|=2 N-1$. For most sets, $|A+A| \approx|A|^{2}$ and $|A \cdot A| \approx|A|^{2}$.

Erdos-Szemeredi Theorem: For any $A \subseteq \mathbb{Z}$, we have

$$
\max \{|A+A|,|A \cdot A|\} \gg|A|^{2-o(1)}
$$

where $o(1) \rightarrow 0$ as $|A| \rightarrow \infty$.
Solymosi (2009): Given two finite sets of positive real numbers A and B, we have

$$
|A \cdot B| \cdot|A+A| \cdot|B+B| \gg \frac{|A|^{2}|B|^{2}}{\log (|A| \cdot|B|)}
$$

Let $r_{A * B}(x)=|\{(a, b) \in A \times B: a * b=x\}|$. For example,

$$
\sum_{x \in A * B} r_{A * B}(x)=|A \times B|=|A| \cdot|B| .
$$

$$
r_{A * B}(x)^{2}=\left|\left\{\left(a, a^{\prime}, b, b^{\prime}\right) \in A^{2} \times B^{2}: a * b=a^{\prime} * b^{\prime}=x\right\}\right|,
$$

and

$$
\sum_{x \in A * B} r_{A * B}(x)^{2}=\left|\left\{\left(a, a^{\prime}, b, b^{\prime}\right) \in A^{2} \times B^{2}: a * b=a^{\prime} * b^{\prime}\right\}\right| .
$$

Let's look at

$$
\begin{gathered}
\left(\sum_{x \in A \cdot B} r_{A \cdot B}(x)\right)^{2} \leq\left(\sum_{x \in A \cdot B} r_{A \cdot B}(x)^{2}\right)\left(\sum_{x \in A \cdot B} 1^{2}\right) \\
|A|^{2}|B|^{2} \leq\left(\sum_{x \in A \cdot B} r_{A \cdot B}(x)^{2}\right)|A| \cdot|B|
\end{gathered}
$$

So it is enough to show that $\sum_{x \in A \cdot B} r_{A \cdot B}(x)^{2} \ll|A+A| \cdot|B+B| \cdot \log (|A| \cdot|B|)$.
Let $S=\sum_{x \in A \cdot B} r_{A \cdot B}(x)^{2}=\sum_{x \in B \div A} r_{B \div A}(x)^{2}$; the left side is counting $\left(a, a^{\prime}, b, b^{\prime}\right)$ such that $a b=a^{\prime} b^{\prime}$, and the right side is counting $\left(a, a^{\prime}, b, b^{\prime}\right)$ such that $\frac{b}{a}=\frac{b^{\prime}}{a^{\prime}}$. We have $\max _{x \in B \div A} r_{B \div A}(x) \leq$ $\min \{|A|,|B|\}$. Write

$$
\begin{gathered}
S=\sum_{j} \sum_{\substack{2^{j-1}<r(m) \leq 2^{j} \\
m \in B \div A}} r_{B \div A}(x)^{2} \leq \log |c| \sum_{\substack{2^{j-1}<r(m) \leq 2^{j} \\
m \in B \div A}} r_{B \div A}(x)^{2} \\
j \leq \log \min \{|A|,|B|\}=\log |c|
\end{gathered}
$$

it's enough to show that $S \leq|A+A| \cdot|B+B|$.
Let $M=\left\{m_{1}, m_{2}, \ldots, m_{l}\right\}, m_{1}<m_{2}<\ldots<m_{l}$,

$$
S^{\prime}=\sum_{i=1}^{l} r_{m_{i}}(x)^{2} \leq \sum_{i=1}^{l} r_{m_{i}}(x) \cdot r_{m_{i+1}}(x)=
$$

let $L_{m_{i}}=$ lattice points on line slope m_{i}; if $p \in L_{m}+L_{m^{\prime}}$, where $m \neq m^{\prime}, r_{L_{m}+L_{m^{\prime}}}(p)=1$ and $\left|L_{m}+L_{m^{\prime}}\right|=\left|L_{m}\right| \cdot\left|L_{m^{\prime}}\right|$, so

$$
\begin{gathered}
=\sum_{i=1}^{l}\left|L_{m_{i}}\right| \cdot\left|L_{m_{i+1}}\right|=\sum_{i=1}^{l}\left|L_{m_{i}}+L_{m_{i+1}}\right| \leq \\
\leq|A \times B+A \times B|=|A+A| \cdot|B+B| .
\end{gathered}
$$

