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1 Counting distinct numbers in a multiplication table

1.1 Summary

By saying quantitative thinking, we want to gain a sense of counting. However, in many cases,
it would be so difficult to count the precise number of objects. In those cases, we want to get a
well estimation of the number of objects. So in the first half of the lecture, we attacked a famous
problem, namely Erdős multiplication table problem, to try to ”count” the number of distinct
integers in a multiplication table.

Note that a multiplication table is simply that:

* 1 2 3 ...

1 1 2 3 ...

2 2 4 6 ...

3 3 6 9 ...

But before that, we first look at the prime number theorem

Theorem 1. The prime number theorem states that π(N) ∼ N
log(N)

Definition 2. A(n) represents the number of distinct integers less than or equal to n2.

Definition 3. ω(n) represents the number of distinct primes less than or equal to n.

Since ω(n) is very hard to estimate, instead we try to estimate the average of it.
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Note that P represents for prime numbers.
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Fact 4. For almost all n ≤ N2, ω(n) = log(log(N))

We used this fact to estimate A(n), we want to show A(n) = O(n2). However, before that, if we
consider the following problem:

Problem 1. Consider ω(ab), ab ≤ N2, a ∈ [
√
N,N ], b ∈ [

√
N,N ]

ω(ab) = ω(a) + ω(b) = log(log(N)) + log(log(N)) = 2log(log(N)) (1)

Then this seems a contradiction to the above fact that for almost all n ≤ N2, ω(n) = log(log(N)),
why? Because ω(n) is additive but not complete additive, so we can’t simply add ω(a) and ω(b) to
get ω(ab), as that would cause repeated counting if a is not relatively prime to b. Hence we want
to look at a simpler problem.

Definition 5. A*(n): for n ≤ N,n = a ∗ b, s.t(a, b) = 1

Fact 6.
A ∗ (n) = O(N2)

Theorem 7.
A ∗ (n) = O(N2) =⇒ A(n) = O(N2)

Proof. Step1: for all n ∈ A(N), n = ab, we have n* = a
gcd(a,b) ∗

b
gcd(a,b) Then we want to look at

A*( N
gcd(a,b)2

), we have A(n) ≤
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d A*(Nd ), where d is the common factor of a, b.

Step2: By the fact above, we know that ∀ϵ > 0,∃β > 0, s.t A*(M) ≤ ϵM2. Fix ϵ, β, we have
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is a constant which equals to ϵN2 ∗ π2
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and N2
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d

1
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≤ N2 ∗N ∗ β
N2 = N2 ∗ β

N . Hence the whole equation is O(N2).

2 Counting distinct numbers in an addition table

2.1 Summary

Now what if instead of the multiplication table we looked at the addition table:

+ 1 2 3 ...

1 2 3 4 ...

2 3 4 5 ...

3 4 5 6 ...
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How many different numbers are in this table? We have |[N ]+[N ]| = 2N−1, counting the numbers
from 2 to 2N .
What about a subtraction table? We have |[N ]− [N ]| = 2N − 1, counting the numbers from 1−N
to N − 1.

Let G be a finite abelian group with +, and a subset H ⊆ G. If H ≤ G, then we have that
|H +H| = |H|. Can we think of another subset H ′ of G such that |H ′ +H ′| = |H ′|?

Claim 1: Suppose |H +H| = |H|, then H is a coset.

Proof : If 0 ∈ H, then H ⊆ H +H, so H +H = H. If 0 /∈ H, then we can shift to get

|(H − h) + (H − h)| = |H +H| = |H| = |H − h|.

Claim 2: Suppose |H −H| < 3
2 |H|. Then, H −H is a subgroup.

Proof : First we will prove that ∀x ∈ H − H, |H ∩ (H + x)| > 1
2 |H|. We will prove this by

contradiction: suppose there exists x ∈ H −H such that |H ∩H + x| ≤ 1
2 |H|. If y /∈ H ∩ (H + x),

then y ∈ H and y /∈ H + x. This means ∀z ∈ H, y ̸= z + x. Then y ̸= z + a− b and y − a ̸= z − b
for some a, b ∈ H and all z ∈ H. We have |H| choices for z and ≥ 1

2 |H| choices for y, which is a
contradiction.

Now to prove the claim, note that ∀x, y ∈ H −H, (H + x) ∩ (H + y) ̸= ∅. Consider z such that
z ∈ H+x and z ∈ H+y. This means z = k+x = k′+y, where k, k′ ∈ H. So, x−y = k′−k ∈ H−H.

Freiman-Ruzsa: Suppose we have a finite A ⊆ Z and |A + A| = O(|A|), then A is a gener-
alized arithmetic progression.

Consider 2[N ] = {20, 21, 22, ..., 2N−1}; we have |2[N ] · 2[N ]| = 2N − 1. For most sets, |A+A| ≈ |A|2
and |A ·A| ≈ |A|2.

Erdos-Szemeredi Theorem: For any A ⊆ Z, we have

max{ |A+A| , |A ·A| } >> |A|2−o(1)

where o(1) → 0 as |A| → ∞.

Solymosi (2009): Given two finite sets of positive real numbers A and B, we have

|A ·B| · |A+A| · |B +B| >>
|A|2|B|2

log(|A| · |B|)

Let rA∗B(x) = | {(a, b) ∈ A×B : a ∗ b = x} |. For example,∑
x∈A∗B

rA∗B(x) = |A×B| = |A| · |B|.
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rA∗B(x)
2 = | {(a, a′, b, b′) ∈ A2 ×B2 : a ∗ b = a′ ∗ b′ = x} |,

and ∑
x∈A∗B

rA∗B(x)
2 = | {(a, a′, b, b′) ∈ A2 ×B2 : a ∗ b = a′ ∗ b′} |.

Let’s look at ( ∑
x∈A·B

rA·B(x)
)2

≤
( ∑
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2
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( ∑
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2
)
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So it is enough to show that
∑

x∈A·B rA·B(x)
2 << |A+A| · |B +B| · log(|A| · |B|).

Let S =
∑

x∈A·B rA·B(x)
2 =

∑
x∈B÷A rB÷A(x)

2; the left side is counting (a, a′, b, b′) such that

ab = a′b′, and the right side is counting (a, a′, b, b′) such that b
a = b′

a′ . We have maxx∈B÷A rB÷A(x) ≤
min{|A|, |B|}. Write

S =
∑
j

∑
2j−1<r(m)≤2j

m∈B÷A

rB÷A(x)
2 ≤ log |c|

∑
2j−1<r(m)≤2j

m∈B÷A

rB÷A(x)
2

j ≤ logmin{|A|, |B|} = log |c|

it’s enough to show that S ≤ |A+A| · |B +B|.

Let M = {m1,m2, ...,ml}, m1 < m2 < ... < ml,

S′ =

l∑
i=1

rmi(x)
2 ≤

l∑
i=1

rmi(x) · rmi+1(x) =

let Lmi = lattice points on line slope mi; if p ∈ Lm + Lm′ , where m ̸= m′, rLm+Lm′ (p) = 1 and
|Lm + Lm′ | = |Lm| · |Lm′ |, so

=
l∑

i=1

|Lmi | · |Lmi+1 | =
l∑

i=1

|Lmi + Lmi+1 | ≤

≤ |A×B +A×B| = |A+A| · |B +B|.
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