Lecture 8: Theory of Fourier analysis on finite abelian groups, BLR linearity test

1 Fourrier Analysis on Groups

Let's G be a finite abelian group
Example 1. $\mathbb{Z}_{2}^{n}, \mathbb{Z}_{p}, \mathbb{Z}_{p}^{n}$
The crux of this section is to consider the set consisting of all the functions

$$
f: G \longrightarrow \mathbb{C}
$$

For \mathbb{C}-vector space and $\operatorname{dim}=|G|$.

1.1 Fourrier basis

A function $\chi: G \rightarrow \mathbb{C}$ is called a character if χ is a homomorphism from G to \mathbb{C}^{X}.

$$
\chi(a+b)=\chi(a)+\chi(b), \forall a, b \in G
$$

Example 2.

- $G=\mathbb{Z}_{p}=\{0,1, \ldots, p-1\}$ and a is any element of \mathbb{Z}_{p}

$$
\chi_{a}(j)=e^{2 \pi i a j / p}=\omega^{a j}
$$

Where ω is $p^{\text {th }}$ root of unity. This gives us all characters of \mathbb{Z}_{p}, p of them. We can add a remark denoting that:

$$
\chi_{a} \chi_{b}(x)=\chi_{a+b}(x)
$$

Which is the group of character (Hom).

- $G=\mathbb{Z}_{2}^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid\right.$ each $\left.x_{n} \in \mathbb{Z}-2\right\}$. The homomorphism gives us that for any χ we should have the following:

$$
\begin{aligned}
& \chi(1,0,0, \ldots, 0) \in\{ \pm 1\} \\
& \chi(0,1,0, \ldots, 0) \in\{ \pm 1\} \\
& \chi(1,1,0, \ldots, 0) \in\{ \pm 1\}
\end{aligned}
$$

Hence, $\chi_{S}\left(x_{1}, \ldots, x_{n}+\right)=\left\{\begin{array}{cc}+1 & \text { if \# 1's in } \chi \text { is even } \\ -1 & \text { if \# 1's in } \chi \text { is odd }\end{array}\right.$
We need to check that $\chi_{S}(x+y)=\chi_{S}(x)+\chi_{S}(y)$. For a general collection of characters, pick $\left(a_{1}, \ldots, a_{n}\right) \in \mathbb{Z}_{2}^{p}$ and define $\chi_{a}(x)=(-1)^{\sum_{i=1}^{n} a_{i} x_{i}}$. Therefore, we have the following:

$$
\chi_{a}(x+y)=(-1)^{\sum_{i=1}^{n} a_{i}\left(x_{i}+y_{i}\right)}=(-1)^{\sum_{i=1}^{n} a_{i} x_{i}}+(-1)^{\sum_{i=1}^{n} a_{i} y_{i}}=\chi_{a}(x) \cdot \chi_{a}(y)
$$

Remark 3. \mathbb{R} / \mathbb{Z} is the circle. $\chi: \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{C}^{X}$. For $n \in \mathbb{Z}$ we have $\chi_{n}(x)=e^{2 \pi i n x}$
Lemma 4. Let G be a finite abelian group. χ, χ^{\prime} be characters of G. Then:

$$
\underset{x \in G}{\mathbb{E}}\left[\chi(x) \bar{\chi}^{\prime}(x)\right]=\left\{\begin{array}{lc}
1 & \text { if } \chi=\chi^{\prime} \\
0 & \text { otherwise }
\end{array}\right.
$$

Here, we consider \mathbb{E} to be the average on the cardinality of G. Since $\chi \bar{\chi}^{\prime}$ is also a character of G since if ω is a root of unity then $\bar{\omega}=\omega^{-1}$. Hence, if we can denote it by $\chi \bar{\chi}^{\prime}=\psi$, we have the following:

$$
\underset{x \in G}{\mathbb{E}}[\psi(x)]=\left\{\begin{array}{lc}
1 & \text { if } \psi \equiv 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

Proof.

$$
\begin{aligned}
\underset{x \in G}{\mathbb{E}}[\psi(x)] & =\frac{1}{|G|} \sum_{x \in G} \psi(x) \\
& =\frac{1}{|G|} \sum_{x \in G} \psi(x \cdot y) \\
& =\frac{1}{|G|} \psi(y)\left(\sum_{x \in G} \psi(x)\right)
\end{aligned}
$$

$\Longrightarrow \forall y,(\psi(y)-1)\left(\sum \psi(x)\right)=0$. Therefore, if $\psi \not \equiv 1$, then $\sum_{x \in G} \psi(x)=0$
So for $G \in \mathbb{Z}_{2}^{n}, G=\mathbb{Z}_{p}$

$$
\left\{\chi_{a} \mid a \in \mathbb{Z}_{2}^{p}\right\}
$$

$$
\left\{\chi_{a} \mid a \in \mathbb{Z}^{p}\right\}
$$

Form orthonormal basis for function $\{f: G \rightarrow \mathbb{C}\}$. Thus, for any $f: G \rightarrow \mathbb{C}$ we can write

$$
f=\sum_{a \in \mathbb{Z}_{2}^{n}} \hat{f}(a) \chi_{a}
$$

Where $\hat{f}(a)=\langle f, x\rangle=\mathbb{E}_{x \in G}\left[f(x) \overline{\chi_{a}}(x)\right]$
$\hat{f}: \mathbb{Z}_{p}^{n} \rightarrow \mathbb{C}$ is called the Fourrier transform.

1.2 Perseval's Identity

$$
\|f\|_{2}^{2}=\underset{x \in G}{\mathbb{E}}\left[|f(x)|^{2}\right]=\sum_{a \in \mathbb{Z}_{2}^{n}}\left[|\hat{f}(a)|^{2}\right]=\|\hat{f}\|_{2}^{2}
$$

Proof.

$$
\begin{aligned}
\sum_{a \in \mathbb{Z}_{2}^{n}}\left[|\hat{f}(a)|^{2}\right] & =\sum_{a}\left|\underset{x}{\mathbb{E}}\left[f(x) \overline{\chi_{a}}(x)\right]\right|^{2} \\
& =\sum_{a}\left(\underset{x}{\mathbb{E}}\left[f(x) \overline{\chi_{a}}(x)\right]\right)\left(\underset{x^{\prime}}{\mathbb{E}}\left[\bar{f}\left(x^{\prime}\right) \chi_{a}\left(x^{\prime}\right)\right]\right) \\
& =\sum_{a}\left(\underset{x, x^{\prime}}{\mathbb{E}}\left[f(x) \bar{f}\left(x^{\prime}\right) \overline{\chi_{a}}(x) \chi_{a}\left(x^{\prime}\right)\right]\right) \\
& =\underset{x, x^{\prime}}{\mathbb{E}}\left[\sum_{a}\left(f(x) \bar{f}\left(x^{\prime}\right) \overline{\chi_{a}}(x) \chi_{a}\left(x^{\prime}\right)\right)\right] \\
& =\underset{x, x^{\prime}}{\mathbb{E}}\left[f(x) \bar{f}\left(x^{\prime}\right) \sum_{a}\left(\overline{\chi_{a}}(x) \chi_{a}\left(x^{\prime}\right)\right)\right]
\end{aligned}
$$

Denote that if $x=x^{\prime}$, then $\sum_{a}\left(\overline{\chi_{a}}(x) \chi_{a}\left(x^{\prime}\right)\right)=|G|$, else it is 0 . Hence, we have:

$$
\begin{aligned}
\|f\|_{2}^{2} & =\underset{x, x^{\prime}}{\mathbb{E}}\left[f(x) \bar{f}\left(x^{\prime}\right) \sum_{a}\left(\overline{\chi_{a}}(x) \chi_{a}\left(x^{\prime}\right)\right)\right] \\
& =\frac{1}{|G|^{2}} \sum|f(x)|^{2}(|G|) \\
& =\underset{x \in G}{\mathbb{E}}\left[|f(x)|^{2}\right]
\end{aligned}
$$

Hence we have that $\mathbb{E}_{x \in G}\left[|f(x)|^{2}\right]=\sum_{a \in \mathbb{Z}_{2}^{n}}\left[|\hat{f}(a)|^{2}\right]$ which gives us that $\|f\|_{2}^{2}=\|\hat{f}\|_{2}^{2}$

1.3 Convolution

For functions $f: G \rightarrow \mathbb{C}$ and $h: G \rightarrow \mathbb{C}$ we define the convolution to be a function $f * h: G \rightarrow \mathbb{C}$ by given by the following:

$$
f * h(x)=\frac{1}{|G|} \sum_{\substack{y, z \text { s.t. } \\ y+z=x}} f(y) h(z)
$$

We also have the following:

$$
\begin{aligned}
\widehat{f * h}(a) & =\underset{x \in G}{\mathbb{E}}\left[(f * h)(x) \overline{\chi_{a}}(x)\right] \\
& =\underset{x \in G}{\mathbb{E}}\left[\sum_{\substack{y, z \text { s.t. } \\
y+z=x}} f(y) h(z) \overline{\chi_{a}}(x)\right] \\
& \left.=\frac{1}{|G|} \sum_{x} \frac{1}{|G|} \sum_{\substack{y, z \text { s.t. } \\
y+z=x}} f(y) h(z) \overline{\chi_{a}}(y+z)\right] \\
& \left.=\frac{1}{|G|^{2}} \sum_{x} \sum_{\substack{y=s . t . \\
z=x-y}} f(y) h(z) \overline{\chi_{a}}(y+z)\right] \\
& \left.=\frac{1}{|G|^{2}} \sum_{y} \sum_{x} f(y) h(x-y) \overline{\chi_{a}}(y) \overline{\chi_{a}}(x-y)\right] \\
& \left.=\frac{1}{|G|^{2}} \sum_{y} \sum_{z} f(y) h(x-y) \overline{\chi_{a}}(y) \overline{\chi_{a}}(z)\right] \\
& \left.=\frac{1}{|G|^{2}}\left(\sum_{y} f(y) \overline{\chi_{a}}(y)\right)\left(\sum_{z} h(z) \overline{\chi_{a}}(z)\right)\right] \\
& =\hat{f}(a) \cdot \hat{h}(a)
\end{aligned}
$$

This shows that it is indeed a homomorphism.
For $A \subseteq G$ we have the following:

$$
\begin{aligned}
1_{A} * 1_{A}(x) & =\frac{1}{|G|} \sum_{\substack{y, z \text { s.t. } \\
y+z=x}} 1_{A}(y) 1_{A}(z) \\
& =\frac{1}{|G|} \cdot \# \text { ways of writting } x \text { as } \begin{array}{r}
y+z \\
y \in A \\
z \in A
\end{array} \\
& = \begin{cases}>0 & \text { if } x \in A+A \\
=0 & \text { if } x \notin A+A\end{cases}
\end{aligned}
$$

Where $\operatorname{support}\left(1_{A} * 1_{A}\right)=A+A$.

2 Linearity testing

Let f be a function:

$$
f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}
$$

Example 5.

1. $f(x) \equiv 0$
2. $f(x)=x_{7}$
3. $f(x)=\sum_{i=1}^{n} x_{i}$
4. $f(x)=<a, x>$

We want to check if f is a linear function by evaluating f at some points.
Remark 6. Need 2^{n} queries into f for the deterministic checks, and $\Omega\left(2^{n}\right)$ queries into f for random checks with success probability 0, 99.

2.1 BLR linearity test

Pick $x, y \in \mathbb{Z}_{2}^{n}$ uniformly at random, and check if $f(x)+f(y)=f(x+y)$
Theorem 7.

1. If $f(x)$ is linear, then the test accepts with probability 1 ;
2. If f differs in $\epsilon 2^{n}$ evaluations from every linear function, then the test rejects with probability at least ϵ;

Proof. Take f such that it passes the test with probability at least $1-\gamma$. Let $F: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{C}$ be a function defined by $F(x)=(-1)^{f(x)}$
Plan: express what we know in terms of \hat{F}.

$$
\begin{aligned}
1-\gamma & \leq \underset{x, y}{\mathbb{E}}\left(\mathbf{1}_{f(x+y)=f(x)+f(y)}\right) \\
& =\underset{x, y}{\mathbb{E}}\left(\frac{1+F(x+y) F(x) F(y)}{2}\right) \\
& =\frac{1}{2}+\frac{1}{2} \underset{x, y}{\mathbb{E}}(F(x+y) F(x) F(y)
\end{aligned}
$$

Write $F=\sum_{a} \hat{F(a)} \chi_{a}$

$$
\begin{aligned}
\underset{x, y}{\mathbb{E}}(F(x+y) F(x) F(y)) & =\underset{x, y}{\mathbb{E}}\left(\sum_{a} \hat{F}(a) \chi_{a}(x+y) \sum_{b} \hat{F}(b) \chi_{b}(x) \sum_{c} \hat{F}(c) \chi_{c}(y)\right) \\
& =\underset{x, y}{\mathbb{E}}\left(\sum_{a, b, c} \hat{F}(a) \hat{F}(b) \hat{F}(c) \chi_{a}(x+y) \chi_{b}(x) \chi_{c}(y)\right) \\
& =\sum_{a, b, c}(\hat{F}(a) \hat{F}(b) \hat{F}(c)) \mathbb{E}\left(\chi_{a}(x) \chi_{a}(y) \chi_{b}(x) \chi_{c}(y)\right) \\
& =\sum_{a, b, c}(\hat{F}(a) \hat{F}(b) \hat{F}(c)) \mathbb{E}\left(\chi_{a}(x) \chi_{b}(x)\right) \mathbb{E}\left(\chi_{a}(y) \chi_{c}(y)\right) \\
& =\sum_{a, b, c}(\hat{F}(a) \hat{F}(b) \hat{F}(c)) \delta_{a b} \delta_{a c} \\
& =\sum_{a} \hat{F}(a)^{3}
\end{aligned}
$$

So, we obtained that

$$
\begin{gathered}
1-\gamma \leq \frac{1}{2}+\frac{1}{2} \sum_{a} \hat{F}(a)^{3} \\
1-2 \gamma \leq \sum_{a} \hat{F}(a)^{3}
\end{gathered}
$$

WTS: if $\sum_{a} \hat{F}(a)^{3}$ is close to 1 , then exists some a s.t. f agrees with $<a, \cdot>$ on most inputs.
Using Parseval's equality we get that

$$
1=\underset{x}{\mathbb{E}}\left(|F(x)|^{2}\right)=\sum_{a}|\hat{F}(a)|^{2}
$$

Therefore,

$$
1-2 \gamma \leq \sum_{a} \hat{F}(a)^{3} \leq \max _{a} \hat{F}(a)\left(\sum_{a}|\hat{F}(a)|^{2}\right)=\max _{a} \hat{F}(a)
$$

Lemma 8. If $|\{x: f(x)=<a, x>\}|=(1-\delta) 2^{n}$ then $\hat{F}(a)=1-2 \delta$
Proof.

$$
\begin{array}{r}
\hat{F}(a)=\underset{x}{\mathbb{E}}\left(F(x) \chi_{a}(x)\right) \\
=\frac{1}{2^{n}}(\#\{x: f(x)=<a, x>\}-\#\{x: f(x) \neq<a, x>\}) \\
=\frac{1}{2^{n}}\left((1-\delta) 2^{n}-\delta 2^{n}\right)=1-2 \delta
\end{array}
$$

So $\max _{a} \hat{F}(a) \geq 1-2 \gamma$, for that a the set:

$$
|\{x: f(x)=<a, x>\}| \geq(1-\gamma) 2^{n}
$$

