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1 First half of the lecture

Theorem 1 (Van der Waerden’s theorem). Suppose N is partitioned into c colors. Then for every
k, there is a monochromatic k-AP (an arithmetic progression of length k.

Example 2. Consider the case c = 2 and k = 3:

1 2 3 4 5 6 7 8 9

B R R B B R R B ?

For the first 8 integers, no three integers of the same color form a monochromatic 3-AP. However,
you cannot add a ninth integer without creating a monochromatic 3-AP. If you add a red 9, then,
the red 3,6,9 forms a monochromatic 3-AP; if you add a blue 9, then the blue 1, 5, and 9 forms a
monochromatic 3-AP.

In order to prove the Van der Waerden’s theorem, it is enough to prove:

Claim 3. ∀c, k, ∃n0 such that any c-coloring of [n0] has monochromatic k-AP.

Let us take a detour before coming to the proof of Theorem 1.

Lemma 4. Theorem 1 implies Claim 3.

Proof. We will prove by contraposition. Suppose for a certain c and k, there does not exist n0

such that any c-coloring of [n0] has a monochromatic k-AP, i.e. ∀n0, ∃ c-coloring of [n0] without
monochromatic k-APs.

For each n0. we have coloring of [n0]. Let S = {all these colorings}. It is obvious that |S| = ∞, and
we will maintain this. We want to prove it will produce a c-coloring of N without monochromatic
k-APs and here is our algorithm:

Step 1: let i = 1.

Step 2: amongst all coloring in S, look at the color that they give to i. For some color α, it appears
as the color of i infinitely many times in S since |S| = ∞. Remove all colorings from S that do not
give color α to i. Define color(i) = α.

Step 3: let i = i+ 1, and repeat Step 2. Note that this algorithm will run forever.
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We claim that the c-coloring of N we get from the above algorithm does not have a monochromatic k-
AP. Assume there is a monochromatic k-AP, saying a0, a1, . . . , ak−1. Note that some coloring in the
original S is consistent with the coloring of N we get from the above algorithm on {a0, a1, . . . , ak−1},
and there are no monochromatic k-APs in the original S by assumption. Contradiction.

We will use the notion of rainbow fans as our main tool to prove Theorem 1.

Definition 5 (Rainbow Fan). A rainbow fan with degree d, radius l, center b ∈ N is a set A1 ∪
A2 ∪ · · · ∪Ad such that

� each Ai is an l-AP with l + 1st member equal to b.

� all elements of any given Ai are colored the same color αi.

� α1, α2, . . . , αd are pairwise distinct.

b

Figure 1: A rainbow fan with degree 4, raidus 3

We will use the following claim to prove Claim 3 and then Theorem 1 follows.

Claim 6. ∀c, d ≤ c, l, ∃ n0 such that any c-coloring of [n0] has a rainbow fan with degree d and
radius l.

Define R(c, d, l) to be the smallest n0 in Claim 2, i.e. any c-coloring of [R(c, d, l)] has a rainbow fan
with degree d and radius l but for any n < R(c, d, l), such a rainbow fan does not exsit for some
c-coloring of [n].

Proof. Induction on c, d, l. Given any (c, d, l), assume we have already proved it for (a, b, l − 1)
where a, b ∈ N and a ≥ b and (c, d− 1, l). We want to prove the claim for (c, d, l).

Let N = R(cn0 , cn0 , l−1) ·n0, where n0 = R(c, d−1, l). Note that R(cn0 , cn0 , l−1) and R(c, d−1, l)
both exist by our assumption. Consider c-coloring of [N ]. Break [N ] into blocks of size n0, which
also exists by our assumption. Each block has rainbow fan with radius l, degree d − 1, or a
monochromatic l + 1-AP.

If any block has a l + 1-AP, we are done.
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If not, consider a coloring of [N/n0] with cn0 colors, where color of i is the sequence of colors
assigned to {j · n0 + 1, j · n0 + 2, . . . , j · n0 + n0}. Since N0/n0 ≥ R(cn0 , cn0 , l − 1), there is a
monochromatic l-AP in this coloring. Suppose the l-AP we found was blocks j1, j2, . . . , jl. By the
way we construct the monochromatic l-AP, each block ji has the same color pattern for all n0

elements inside it and ji ·n0+A1∪A2∪ · · ·Ad−1 is a degree d−1, radius l rainbow fan in the block
ji. Let jin0 + b denote the centers of these fans. For s ∈ [d − 1], As has a monochromatic l-AP;
there exists some ds such that As = {b+ ds, b+2ds, . . . , b+ l · ds}. Since we have l blocks, we have
l such rainbow fans. Notice that jin0 + b + wds has the same color for all i, we denote the color
αs. Let Bs = {jin0 + b+ (l + 1− i)ds : i ∈ [l]}, which is a monochromatic l-AP and every element
of Bs is colored by αs. Let B0 = {jin0 + b : i ∈ [l]}, which is also a monochromatic l-AP. Then,
B0 ∪B1 ∪ . . . Bd−1 is a rainbow fan with degree d, radius l, center jl+1 · n0 + b.

b

j1 j2. . . jl. . .

(c, d− 1, l)-
rainbow fan

(c, d− 1, l)-
rainbow fan

(c, d− 1, l)-
rainbow fan

Figure 2: Construction of a (c, d, l)-rainbow fan

Claim 3 follows from Claim 6, and thus proves Theorem 1.

2 Second half of the lecture

The second part of Feb 28 covered four theorems in additive combinatorics (combinatorics with an
additive structure). The first two involve sums in coloured sets of natural numbers. The last two
are about adding subsets of an abelian group.

2.1 Colouring Continues

A c-colouring of a set X is a map “colour(x)” from X to a set of c distinct colours. A set of points
is monochromatic if all points in the set are assigned the same colour.
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The first theorem says that for any c and a large enough n, every c-colouring of Z/nZ has some
x, y, z all the same colour with x+y = z. Both the colouring theorems from this part of the lecture
work on {1, 2, ..., n} with regular addition just as well as on Z/nZ.

Theorem 7 (Schur’s Theorem). ∀c ∈ N,∃n0 ∈ N so that ∀n > n0 if we c-colour Z mod n
(also known as the additive group Z/nZ), then there are monochromatic x, y, z ∈ Z/nZ such that
x+ y = z.

This proof is much easier than the proof from part 1 of today’s class! It’s graph-theory based and
uses the Graph-Ramsey theorem.

Proof. Take a c-colouring of Z/nZ.

Create a c-coloured graph as follows: The vertices of our graph are Z/nZ, and every pair of vertices
are connected, making the graph complete. Colour the edge (i, j) with the colour of the vertex j− i
if j > i. Otherwise use the colour of i− j.

Graph-Ramsey says that for large enough N relative to c, there is a monochromatic triangle in
this graph. That is, ∃n0, so that n > n0 implies there are some i, j, k with i < j < k and
colour(j − i) = colour(k − j) = colour(k − i).

Let x = j − i, y = k − j and z = k − i.

x+ y = j − i+ k − j

= k − i

= z

Now to one-up Schur’s Theorem: we show the same thing for x+ y = z + w.

Theorem 8 (Schur++). ∀c,∃n0 so that ∀n > n0, if we c-colour Z/nZ then there are distinct
x, y, z, w monochromatic with x+ y = z + w.

Proof. Construct a complete coloured graph on Z/nZ as in Schur’s Theorem. Some colour class
must contain at least n

c edges.

Within this colour class, there are at least
( 1

c
n
2

)
sums of distinct elements, but at most 2n results

of these sums.

By the pidgeonhole principle, when
( 1

c
n
2

)
> 2n, some pair of sums must give the same result, so

there are some x, y, z, w so that x+ y = z + w.

Note that x, y, z, w are automatically distinct: If x = z then y = w so x+ y and z +w are not two
distinct sums, and would never have been considered by our process.
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You can compute this bound but we didn’t do it in class: n0 = 10c2 is sufficiently large for any c.

2.2 SumSets

Definition 9 (SumSet). If A,B ⊂ G where G is an abelian group.

we define the SumSet A+B = {a+ b, a ∈ A, b ∈ B}

From here forward, A and B always denote subsets of some abelian group G.

Question 10. If |A| = m and |B| = n, what can we say about |A+B|?

Some ideas:

1. It’s at most |A| · |B|, since there are at most that many distinct sums.

2. When both A and B are non-empty, |A+B| ≥ max(|A|, |B|), because A+ b for any b ∈ B is
a coset of A, so has the same size. The same is true for B.

3. If A = B and B is a subgroup of G, |A+B| achieves the lower bound above.

4. When A,B are small relative to G, if they are chosen at random, it seems likely that |A+B|
will be closer to |A| · |B|, since it is unlikely for any sums in A+B to be equal.

Turns out that we aren’t the first people to ask this question. Cauchy, Davenport, and their baby,
already have it figured out!

Theorem 11 (Baby Cauchy Davenport Theorem). If A,B ⊂ R with |A| = m and |B| = n, then
|A+B| ≥ m+ n− 1.

This bound is actually tight. You can consider the sets A = {1, ...,m} and B = {1, ..., n}. Then
A+B = {2, ...,m+ n}.

Proof. Write A = {a1, ..., am} and B = {b1, ..., bn} with a1 < a2 < ... < am and b1 < b2 < ... < bn.

The ordering of the elements tells us that

a1 + b1 < a1 + b2 < ... < a1 + bn < a2 + bn...am + bn

There are n elements up to a1 + bn and m− 1 after that, for a total of n+m− 1 distinct sums.
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This proof used order heavily, but we don’t actually need it. A similar theorem holds in Z/nZ.
This proof was too hard for the baby, so the theorem got renamed.

Theorem 12 (Cauchy Davenport). If A,B ⊂ Z/pZ for prime p, |A| = m and |B| = n, then

|A+B| ≥ min(m+ n− 1, p)

We get to keep our bound from Baby Cauchy-Davenport unless we run out of elements in the
surrounding group! That’s pretty nice.

Reader’s Note: This proof will use polynomials and the fact that Z/pZ = Fp, the finite field
with p elements. It doesn’t work with just any group that is also a finite field. It also requires that
Z/nZ has no subgroups.

First, we do two lemmas that work for on polynomials over any field. They’re called ”Combinatorial
Nullstensatz”, which means ”statements about zeroes”.

Lemma 13 (Combinatorial Nullstensatz 1 – CN1). Let F(X,Y) be a polynomial over any field that
vanishes on A×B. Define ZA(X) = πa∈A(x− a) and ZB(Y ) = πb∈B(Y − b). Then

F (X,Y ) = U(X,Y ) · ZA(x) + V (X,Y ) · ZB(y)

Where deg(U) ≤ deg(F )− |A|,and deg(V ) ≤ deg(F )− |B|.

We will use CN1 in our proof of Cauchy Davenport to reduce the degree of F while keeping its
values the same.

Lemma 14 (Combinatorial Nullstensatz 2 – CN2). Suppose F(X,Y) has X-degree < |A| and Y-
degree < |B| and vanishes on A×B. Then F (X,Y ) ≡ 0.

We will prove CN2 first, and use it to prove the CN1.

Proof of CN2. Recall: For any polynomial p over a field, if p(x) has has k roots and degree < k,
then p(x) is the zero polynomial.

The form of F is F (X,Y ) =
∑|A|−1

i=0 ui(Y )Xi with deg(ui) < |B|. Since F (X, b) has |A| zeroes,
we know ui(b) = 0 for all i and all b ∈ B. This means ui(Y ) has at least |B| zeroes, so the same
argument shows the ui ≡ 0 for all i.

Now we go back to prove CN1.
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Proof of CN1. ZA(X) = X |A| − g(X), where g(X) has degree less than |A|. This means we can
replace X |A| = ZA + g(X), and similarly for Y |B| and ZB(Y ).

We can replace all monomials X |A| in F like this until we get something of the form.

F (X,Y ) = U(X,Y )·ZA(X)+V (X,Y )·ZB(Y )+polynomial with X-degree ¡ —A—, and Y-degree ¡ —B—

F , ZA and ZB are all zero on A× B, so the polynomial at the end must be as well. By CN2, the
polynomial at the end must be zero everywhere. This gives us

F (X,Y ) = U(X,Y ) · ZA(X) + V (X,Y ) · ZB(Y )

We didn’t show that U and V have the required degrees in class, but it follows from the process.

Now we prove Cauchy Davenport

Proof of Cauchy Davenport. Suppose p < m + n − 1. Since A + B ⊂ Fp, |A + B| < p so we are
done. Therefore, we only need to work on the case that m+ n− 1 ≤ p.

Let C = A+B. Suppose for the sake of contradiction that |C| ≤ m+ n− 2.

Consider Q(X,Y ) ∈ Fp[X,Y ] given by Q(X,Y ) =
∏

c∈C(X + Y − c). The degree of Q is |C| and
Q vanishes on A×B. The highest degree part of Q(X,Y ) is

(X + Y )|C| = (X + Y )m+n−2

= (X + Y )(m−1)(n−1)

=

(
m+ n− 2

m− 1

)
Xm−1Y n−1

The coefficient
(
m+n−2
m−1

)
is non-zero because p is prime and m+n− 2 < p. (This is where the proof

fails in other finite fields.)

By CN1,
Q(X,Y ) = U(X,Y ) · ZA(X) + V (X,Y ) · ZB(Y )

where deg(U) ≤ n − 2 and deg(V ) ≤ m − 2. A term of order Xm−1Y n−1 is therefore impossible.
This is a contradiction, so |C| > m+ n− 2.
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