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1 Ramsey Theory for regular graphs

Theorem 1. Take the complete bipartite graph K(n, n) with n vertices, n ≥ 1000, on either side.
Color all edges red or blue arbitrarily. Then, there is a monochromatic K2,2.

Proof. Number of red edges or number of blue is 1/2n2. So by theorem from last time and since
1/2n2 ≥ O(n3/2), there is K2,2 in the more popular color.

Theorem 2. For n ≥ 1000. Take Kn (the complete graph on n vertices). Color all the edges red
or blue arbitrarily. Then, there is a monochromatic K3 (triangle).
Q: Does ≥ 1/2

(
n
2

)
edges in an n-vertex graph guarantee a triangle?

A: No. K2,2 has n2/4 edges but has no triangle. So previous reasoning doesn’t work as most popular
color can be in K2,2.

Proof. For n = 6.
Take a vertex v. v has 5 edges (in K6). ≥ 3 edges are of the same color, say red. Let u1, u2, u3 be
3 neighbors of v such that vui is red. Then, if any uiuj is red then vuivj is a red triangle. Else,
u1u2u3 is a blue triangle.

Theorem 3. Ramsey’s theorem: For any number of colors c and for any size of clique k, there
exists n0 such that for every n ≥ n0 and for any c-coloring of the edges of Kn, there exists some
monochromatic Kk.

Proof. Assume n ≥ TBD.
Pick any vertex v. There are n− 1 edges from v. So ≥ n−1

c edges of the same color, α.
Let S = { vertices joined to v by color α }.∣∣S∣∣ ≥ n−1

c .
Claim: P (k1, ..., kc) = “∀k1, ..., kc,∃n0(k1, ..., kc) s.t. ∀n ≥ n0, any c-coloring of edges of Kn has
either

� Kk1 in color 1.

� Kk2 in color 2.
...

� Kkc in color c. ”
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If
∣∣S∣∣ ≥ n0(k1, ...kα−1, kα − 1, kα+1, ..., kc) then there exists either:

� Kk1 in color 1 (done)

� Kk2 in color 2 (done)
...

� Kkα−1 in color α− 1 (done).

� Kkα−1 in color α. (done with v included ⇒ gives Kkα).
...

� Kkc in color c (done).

Value of n0(k1, ..., kc) = 1 + c.maxαn0(k1, ..., kα−1, kα − 1, kα+1, ..., kc).
Can take n0(k1, ..., kc) = 1 +

∑
α n0(k1, ..., kα−1, kα − 1, kα+1, ..., kc)

Theorem 4. Infinite (countable) version of Ramsey’s Theorem: For a complete graph on countable
infinite number of vertices and for c ∈ N colors, there exists an infinite countable monochromatic
complete subset of the graph.

Proof. Start with a vertex v0. ∃ some color α0 s.t. there are infinitely many edges of v0 colored
α0. Let S0 be the set of neighbors of v0 with edges of color α0.
Now move into S0. Pick v1 ∈ S0. There are infinitely many edges from v1 to S0 and at least
infinitely many are of the same color, say α2. Let S1 = {u ∈ S0

∣∣ v1u is colored α1},
∣∣S1

∣∣ = ∞.
Repeat.
We get sequences:

� v0, v1, ..., with vi ∈ Si−1.

� α0, α1, ..., s.t. αi ∈ [c].

� S0, S1, ..., with Sj ⊂ Si for j > i.

Also note that color (vivj) =

{
αi, if i < j

αj , if i < i
Since there are finitely many αi, some color β appears as αi for infinitely many i.
Let I = {i s.t. αi = β}.
V = {vi s.t. i ∈ I}.
color(vi, vj) for i, j ∈ I is equal to αi or αj which is β.
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2 Ramsey for a 3-uniform hypergraph

Definition 5. Hypergraph: (V,E) where the set E is composed of hyperedges, E ⊆ P (V )

Definition 6. 3-Uniform Hypergraph: (V,E) where the hyperedges are E ⊆
(
V
3

)
Definition 7. K

(3)
n : the complete 3-uniform hypergraph on n vertices

Theorem 8. For all c,k there exists an n0 such that for all n ≥ no any colouring of the edges of

K
(3)
n has a monochromatic K

(3)
k .

2.1 Proof 1: Using Graph Ramsey into Pigeonhole Principle

Proof. Create graph G0 on [n] \ v0 colour ab in K
(3)
n . By Ramsey’s theorem for graphs, if n− 1 is

big enough then there exists some S0 such that all edges in S0 are coloured some colour α0.

So every hyperedge v0ab with a, b ∈ S0, where |S0| ≈ O(log n) and the hyperedge v0ab has colour

α0. Take any v1 ∈ S0 create a colouring of KS0\v0 by colouring in K
(3)
k of vab. There exists a

monochromatic clique S1 by graph Ramsey with colour α1. So any hyperedge v1ab with a, b ∈ S1

has colour α1. With |S1| ≈ log |S0|. Repeating many times, we get:

v0 v1 v2 ...vertices
α0 α1 α2 ...colours
S0 S1 S2 ...|Si| ≈ O(log |Si−1|)

1. Sj ⊆ Si, ∀i < j

2. vi ∈ Si−1

3. colour(viab) = αi,∀a, b ∈ Si

These 3 facts together means that colour(vivjvk) = αi, ∀i < j < k. Repeat this process ck times,
some colours appear as αi for at least k choices of i. I = {i such that αi ∈ β }. Then if |I| ≥ k,

colour(vivjvk) = β, ∀i, j, k ∈ I This means that vi : i ∈ I is the desired K
(3)
k . Now because
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|Si| ≈ O(log |Si−1| we took log2 ck times in order to get the desired K
(3)
k and we need to reverse

that in order to get the upper limit. This means

R(3)(K) ≤ 22
22

...

Where R(3)(K) is the minimum size of a graph that a random c colouring will have a monochromatic

K
(3)
k and 22

22
...

is a power tower of height ck.

Here we used graph Ramsey at every stage to refine the set then used the pigeonhole principle at
the end. It’s possible to use the pigeonhole principle to refine and graph Ramsey at the end.

2.2 Proof 2: Using Pigeonhole Principle into Graph Ramsey

Proof. Start with a pair v0v1 consider v0v1a. Some colour α0 is most popular. Zoom into that:

S0 = {a : colour(v0v1a) = β}

|S0| ≥
n− 2

c

Pick v2 ∈ S1. For each b ∈ S0 consider the tuple of colours (v0v2b, v1v2b) ∈ [C]2. Let (α02, α12) ∈
[C]2 be the popular colours seen and let S2 = {b : colour(v0v2b) = α02, colour(v1v2b) = α12}

|S2| ≥
|S1|
c2

Why c2? Because there are c2 possible colours.

v0 v1 v2 ...vl−1

α01 α02 α12 ...αl−1 ∀i < j < l
S1 S2 S3 ...Sl−1

colour(vivjb) = αij , ∀b ∈ Sj , i < j

Pick vl ∈ Sl−1. For each b ∈ Sl−1 consider colour vector

w⃗(b) = (colour(v0vlb), colour(v1vlb), colour(v2vlb), ..., colour(vl−1vlb))

Take the most popular colour vector

(α0l, α1l, α2l, ..., αl−1,l)

Let
Sl = {b : w⃗(b) = (α0l, α1l, α2l, ..., αl−1,l)}
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|Sl| ≥
|Sl−1|
cl

Repeat: we have
v0, v1, ..., vi, ..., vm, αij ∈ [C],m ≥ R(k)

Apply Graph Ramsey
colour(vivjvk) = αij ∈ [C], i < j < k

If V is the mono clique of size k then colour(vivjvk) is the same colour which means that we have

a monochromatic K
(3)
k . |Si| = |Si−1|

ci
, we need i to go into Rc(k)

|SRc(k)| =
n

c0+1+2+3+...+R(k)
=

n

cRc(k)
> 1

n ≥ cRc(k) = cc
ck

2.3 Minimum size of R2(k)

Definition 9. Rc(k) = smallest n such that any c colouring of Kn has a monochromatic Kk

Definition 10. R
(3)
c (k) = smallest n such that any c colouring of K

(3)
n has a monochromatic K

(3)
k

We saw: Rc(k) ≤ cO(ck) and R
(3)
c (k) ≤ cc

O(ck)
. In the 1930s there was a conjecture by Erdős and

Szekeres that R2(k) ≤ k2. In the 1940s Erdős showed that R2(k) ≥ (
√
2)k

Theorem 11. R2(k) ≥ (
√
2)k

Proof. Proof that R2(k) ≥ (
√
2)k: Set n ≥ TBD, take a random 2-colouring of Kn. We will show

with probability greater than 0 that the resulting colouring has no monochromatic k-clique.

P[There exists a monochromatic red k-clique] ≤
∑

S⊆([n]
k )

P[S is a red clique]

≤
(
n

k

)
∗ 1

2(
k
2)

Choose n so that 2(
k
2) < 1/10

(
n

k

)
<

2(
k
2)

10
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Using a useful inequality:
(
n
k

)
< ( enk )k

(
en

k
)k <

2(
k
2)

10

en

k
<

2
k−1
2

10

n <
k ∗ 2

k−1
2

10e
< O(k ∗ ek/2)

P[There exists a monochromatic clique] ≤ P[There exists red k-clique] + P[There exists blue k-clique]

≤ 1/10 + 1/10 < 1
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