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1 Ramsey Theory for regular graphs

Theorem 1. Take the complete bipartite graph K(n,n) with n vertices, n > 1000, on either side.
Color all edges red or blue arbitrarily. Then, there is a monochromatic Ka 2.

Proof. Number of red edges or number of blue is 1/2n2. So by theorem from last time and since
1/2n? > O(n3/2), there is K2 in the more popular color. O

Theorem 2. For n > 1000. Take K,, (the complete graph on n vertices). Color all the edges red
or blue arbitrarily. Then, there is a monochromatic K3 (triangle).

Q: Does > 1/2(3) edges in an n-vertex graph guarantee a triangle?

A: No. Ks 2 has n?/4 edges but has no triangle. So previous reasoning doesn’t work as most popular
color can be in Kj».

Proof. For n = 6.

Take a vertex v. v has 5 edges (in Kg). > 3 edges are of the same color, say red. Let u, ug, us be
3 neighbors of v such that vu; is red. Then, if any u;u; is red then vu;v; is a red triangle. Else,
uiusus is a blue triangle. ]

Theorem 3. Ramsey’s theorem: For any number of colors ¢ and for any size of clique k, there
exists ng such that for every n > ng and for any c-coloring of the edges of K,,, there exists some
monochromatic Kj,.

Proof. Assume n > TBD.

Pick any vertex v. There are n — 1 edges from v. So > ”T_l edges of the same color, a.

Let S = { vertices joined to v by color « }.

5] > =L

Claim: P(ky,....,kc) = “Vk1,...,ke,3Ing(k1, ..., kc) s.t. Vn > ng, any c-coloring of edges of K, has
either

e K}, in color 1.

e Kj, in color 2.

e K, in colorc. ”



If ‘S’ > ng(k1,...ka—1,ka — 1, ka+1, ..., kc) then there exists either:

e K}, in color 1 (done)

e K, in color 2 (done)

e Kj, , in color o — 1 (done).

e K1 in color a. (done with v included = gives Ky, ).

e K, in color ¢ (done).

Value of ng(k1, ..., k.) = 1 + cmaxono(ki, ..oy ka1, ka — 1, kat1, - ke).
Can take ng(ki,...,ke) =1+ >, no(k1, ..., ka—1,ka — L, kay1, ..., ke) O

Theorem 4. Infinite (countable) version of Ramsey’s Theorem: For a complete graph on countable
infinite number of vertices and for ¢ € N colors, there exists an infinite countable monochromatic
complete subset of the graph.

Proof. Start with a vertex vg. 3 some color «q s.t. there are infinitely many edges of vg colored
ag. Let Sy be the set of neighbors of vg with edges of color ay.
Now move into Sy. Pick v; € Sg. There are infinitely many edges from vy to Sp and at least

infinitely many are of the same color, say as. Let S = {u € So‘ viu is colored o}, Sl‘ = 00.
Repeat.
We get sequences:
® 0,1, ..., with v; € 5;_1.
e ap,a,..., s.b. a; € [c].
e Sy, 51, ..., with Sj C S; for j > 1.
o, if i < J
Also note that color (v;v;) = o
aj, if i <
Since there are finitely many «;, some color 8 appears as «; for infinitely many i.
Let I = {is.t. oy = }.
V ={v; s.t. i € I}.
color(v;, v;) for 4, j € I is equal to «; or a; which is . O



2 Ramsey for a 3-uniform hypergraph

Definition 5. Hypergraph: (V, E) where the set E is composed of hyperedges, E C P(V)

Definition 6. 3-Uniform Hypergraph: (V,E) where the hyperedges are E C (‘g)

Definition 7. Kr([g): the complete 3-uniform hypergraph on n vertices

Theorem 8. For all ¢,k there exists an ng such that for all n > n, any colouring of the edges of

)

KT(Z3) has a monochromatic Kli?) .

2.1 Proof 1: Using Graph Ramsey into Pigeonhole Principle

Proof. Create graph G on [n] \ vg colour ab in Kr(Lg). By Ramsey’s theorem for graphs, if n — 1 is
big enough then there exists some Sy such that all edges in Sy are coloured some colour ay.

n

Monochromatic

So every hyperedge vpab with a,b € Sy, where |Sy| = O(logn) and the hyperedge vpab has colour

ap. Take any vy € Sy create a colouring of Kg\,, by colouring in K Igg) of vab. There exists a
monochromatic clique S; by graph Ramsey with colour a;. So any hyperedge viab with a,b € Sy
has colour a;. With |S;| =~ log |Sy|. Repeating many times, we get:

vg V1 U9 ...vertices
ag a1 Q9 ...colours

S() Sl SQ ‘Sl’ ~ (’)(log\Si_l\)
1. Sj C S5, Vi<jg
2. v; € 8;_1
3. colour(v;ab) = ay,Va,b € S;
These 3 facts together means that colour(v;vjvi) = oy, Vi < j < k. Repeat this process ck times,

some colours appear as «; for at least k choices of i. I = {i such that a; € 5 }. Then if |I| > k,
colour(v;vjvg) = B, Vi,j,k € I This means that v; : i € I is the desired Klg?’). Now because



S;| = O(log |.S;_1| we took log, ck times in order to get the desired K (3) and we need to reverse
| g 82 g P
that in order to get the upper limit. This means

R(?’)(K) < 2222.,4

Where R®)(K) is the minimum size of a graph that a random ¢ colouring will have a monochromatic
2°..
K £3) and 22 is a power tower of height ck. O

Here we used graph Ramsey at every stage to refine the set then used the pigeonhole principle at
the end. It’s possible to use the pigeonhole principle to refine and graph Ramsey at the end.

2.2 Proof 2: Using Pigeonhole Principle into Graph Ramsey

Proof. Start with a pair vgv; consider vgvia. Some colour «q is most popular. Zoom into that:

So = {a : colour(vovia) = S}

-2
1So| > =

Pick vy € S;. For each b € Sy consider the tuple of colours (vougb, viv2b) € [C]2. Let (age, a12) €
[C]? be the popular colours seen and let Sy = {b : colour(vovab) = g2, colour(viveb) = a2}

S1
152/ > 21
c
Why ¢2? Because there are ¢ possible colours.
Yy p
Vo (%1 V2 U1

ol Qo2 Q12 .eoqoq Vi< <l
S1 Se Sy .S

colour(viv;b) = a;;,Vb € Sj,i < j

Pick v; € S;_1. For each b € S;_1 consider colour vector

w(b) = (colour(vovib), colour(vivb), colour(vaud), ..., colour(vi_1u;b))
Take the most popular colour vector

(aDlv A7, QL veey al—l,l)

Let
Sy = {b:W(b) = (o, a1, g, oy y—17) }



|Sl 1]

1Si| >

Repeat: we have
V0, ULy ey Uiy ey Uy Ol € [C],m > R(k)

Apply Graph Ramsey
colour(vivjug) = a5 € [Clyi < j <k

If V' is the mono clique of size k then colour(v;vjuy) is the same colour which means that we have

|Sz 1|

a monochromatic K |S | = , we need i to go into R.(k)

S . n . n 1
[Skei] = O+142+43+. +R(k) — oRe(k) =

ck
n Z CRC(k‘) — CC

2.3 Minimum size of Ry (k)

Definition 9. R.(k) = smallest n such that any ¢ colouring of K, has a monochromatic Ky,

Definition 10. R((;g)(k) = smallest n such that any ¢ colouring of K,(LS) has a monochromatic K,gg)

CCO(ck:)

We saw: R.(k) < ¢9(%) and RS )(k‘) In the 1930s there was a conjecture by Erdés and
Szekeres that Ra(k) < k2. In the 1940s Erdds showed that Ra(k) > (v/2)F
>

Theorem 11. Ry(k) > (v/2)F

Proof. Proof that Ra(k) > (v/2)F: Set n > TBD, take a random 2-colouring of K,,. We will show
with probability greater than 0 that the resulting colouring has no monochromatic k-clique.

P[There exists a monochromatic red k-clique] < Z P[S is a red clique]

Choose n so that 2(3) < 1/10

() <5



Using a useful inequality: (}) < (en)k

k

en 2(2)
< 10

k—1

en < 272

k 10
k % 2%

rre s k/2
T < O(k = €"7)

P[There exists a monochromatic clique] < P[There exists red k-clique| + P[There exists blue k-clique]
<1/10+1/10 < 1

O]



