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1 Basic Probabilistic Inequalities

Definition 1. Let Ω be a finite set, which we call a probability space. A probability measure
be a function µ : Ω → R≥0 satisfying ∑

w∈Ω
µ(w) = 1

Definition 2. An S-valued random variable on a probability space Ω is a function f : Ω → S.
We may sometimes write “r.v.” to mean “random variable”.

1.1 A toy problem

Suppose we have n fair coins Xi each of which is 0 or 1 with equal probability 1
2 , suppose further

that each coin toss is independent. Give, with proof, an upper bound on the probability that

n∑
i=1

Xi ≥
3n

4
.

Definition 3. If X is an R-valued r.v., we can define the expectation of X by

E[X] :=
∑
x∈R

Pr[X = x] · x

It is easy to check the following:

Claim 4 (Linearity of Expectation). If X and Y are R-valued random variables and α ∈ R, then

E[αX + Y ] = αE[X] = E[Y ].

We now introduce an inequality to help us with the toy problem:

Theorem 5 (Markov’s inequality). If X is a nonnegative R-valued r.v., then for any t > 0 we have

Pr[X ≥ t] ≤ E[X]

t
.
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Proof. If we set Pr[X ≥ t] = λ, then

E[x] =
∑
x≤t

Pr[X = x] · x+
∑
x≥t

E[x] · x

≥ 0 + λ · t

Thus,

λ ≤ E[X]

t
.

Returning to the toy problem, set X =
∑n

i=1Xi. Then, by the linearity of expectation,

E[X] = E

[
n∑

i=1

Xi

]

=

n∑
i=1

E [Xi]

=
n

2
.

Applying Markov’s inequality,

Pr

[
X ≥ 3n

2

]
≤ n/2

3n/4
=

2

3
.

We can get a better bound using Chebyshev’s inequality, which we will state below. First, we
introduce the variance of a random variable:

Definition 6 (Variance). Let X be an R-valued random variable. The variance of X is

Var(X) = E[(X − E[X])2].

Theorem 7 (Chebyshev’s inequality). Let X be a R-valued random variable. For any t > 0, we
have

Pr [|X − E[X]| > t] ≤ Var(X)

t2
.

Proof. Define Y = (X − E[X])2. Applying Markov’s inequality gives us

Pr[Y ≥ t2] = Pr[
√
Y ≥ t] ≤ E[Y ]

t2
=

Var(X)

t2
,

and as
√
Y = |X − E[X]|, we get the desired inequality.
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Returning to the toy problem,

Var(X) = E[(X − E[X])2] = E

( n∑
i=1

Xi −
n∑

i=1

E[Xi]

)2


= E

 ∑
1≤i,j≤n

(Xi − E[Xi])(Xj − E[Xj ])


=

∑
1≤i,j≤n

E[(Xi − E[Xi])(Xj − E[Xj ])]

=
∑

1≤i=j≤n

E[(Xi − E[Xi])
2] +

∑
1≤i ̸=j≤n

E[(Xi − E[Xi])]E[(Xj − E[Xj ])]

using independence

=

n∑
i=1

E

[(
Xi −

1

2

)2
]

For any 1 ≤ i ≤ n, we can compute(
Xi −

1

2

)2

=

{
(0− 1

2)
2 = 1

4 With probability 1
2

(1− 1
2)

2 = 1
4 With probability 1

2

So taking the sum gives us Var(X) = E[(Xi − 1/2)2] = n
4 . Applying Chebyshev’s inequality then

gives

Pr[|X − n/2| > t] ≤ Var(X)

t2
=

n/4

t2

And setting t = n
4 gives a bound of Pr[|X − n/2| > t] ≤ 4

n .
1

We can actually get an even stronger bound if we raised (X − E[X]) to the power of 4 rather
than 2; we would instead have a sum across 1 ≤ i, j, k, l ≤ n whose terms vanish unless an even
number of i, j, k, l are equal. Plugging this in would give a bound on the order of 1/n2. We can use
Chebyshev-style arguments to get even better bounds.

2 Chernoff Bounds

The aim of this section is to get a better inequality by applying Markov’s inequality to fancier
random variables. Using the random variables defined in the previous section’s toy problem, define
Zi = Xi − 1

2 and Z =
∑n

i=1 Zi. Fix a > 0, and define Y = eaZ . Then, by Markov’s inequality,

Pr[Y > t] = Pr
[
eaZ > eat

]
≤ E[eaZ ]

eat

Now to compute E[eaZ ], we can use the fact that the Zi’s are independent to get

E
[
eaZ
]
= E

[
ea(Z1+···+Zn)

]
= E

[
n∏

i=1

eaZi

]
=

n∏
i=1

E
[
eaZi

]
1X is positive, so |X − n/2| > n/4 if and only if X > 3n/4.
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For every 1 ≤ i ≤ n, we can calculate the expectation of eaXi :

E
[
eaXi

]
=

1

2
· e−a/2 +

1

2
· ea/2.

Plugging in this expectation gives the bound

Pr[Y > t] ≤

(
e−a/2

2 + ea/2

2

)n
eat

We can then find the best bound possible by minimizing

r =

(
e−a/2

2
+

ea/2

2

)n

with respect to a, which we can estimate by the following lemma:

Lemma 8. For any x ∈ R, we have
cosh(x) ≤ ex

2/2.

Proof. Comparing Taylor series,

cosh(x) =
ex + e−x

2
=

∞∑
k=0

1

(2k)!
x2k ≤

∞∑
k=0

1

2kk!
x2k = ex

2/2.

This above bound then gives us

Pr[Y > t] ≤

(
e−a/2

2 + ea/2

2

)n
eat

≤

(
ea

2/8
)2

eat

= ea
2n/8−an/4.

Setting a = 1, we get that Pr[Y > n/4] ≤ en/8−n/4 = e−n/8, which is significantly smaller than any
of the polynomial bounds we got earlier.

Theorem 9 (Full Chernoff bound on n independent coins). If X1, . . . , Xn are independent random
variables with Pr[Xi = 1] = p, then

Pr

[∣∣∣∣∣
n∑

i=1

Xi − np

∣∣∣∣∣ > εn

]
≤ e

ε2n
3

This gets vanishingly small when ε >> 1/
√
n, i.e, for arbitrarily small δ > 0, we can find large

enough n such that

Pr

[
n∑

i=1

Xi ∈ [np− k
√
n, np+ k

√
n]

]
= 1− δ.
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3 Random graphs

Let G(n, p) denote a graph with n vertices such that each edge shows up independently with
probability p. We want to determine the average number of triangles that G has.

For each potential edge {i, j}, let Xi,j be the indicator random variable for that edge. For each
potential triangle {i, j}, {j, k}, {k, i}, let Zi,j,k be the indicator for that triangle appearing. Then
define

Z =
∑

{i,j,k}∈([n]
3 )

Zi,j,k

The goal of this section is to understand what Z usually is. We first compute its expectation:

E[Z] =
∑

{i,j,k}∈([n]
3 )

E[Zi,j,k] =
∑

{i,j,k}∈([n]
3 )

E[Xi,j ]E[Xj,k]E[Xi,k] =

(
n

3

)
p3

We can also compute the variance of Z:

Var(Z) = E

[(
Z −

(
n

3

)
p3
)2
]

= E

∑
i,j,k

Zi,j,k − p3

2
=
∑
i,j,k

i′,j′,k′

E[(Zi,j,k − p3)(Zi′,j′,k′ − p3)]

Notice that Zi,j,k and Zi′,j′,k′ are independent whenever |{i, j, k} ∩ {i′, j′, k′}| < 2, so

V ar(Z) =
∑
i,j,k

i′,j′,k′

|{i,j,k}∩|{i′,j′,k′}|≥2

E[(Zi,j,k − p3)(Zi′,j′,k′ − p3)]

=
∑
i,j,k

E[(Zi,j,k − p3)2] +
∑
i,j,k

k′ /∈{i,j,k}

E[(Zi,j,k − p3)(Zi′,j′,k′ − p3)],

which is around
(
n
k

)
p3(1− p3) +

(
n
4

)(
4
2

)
(p5 − p6) ∈ Θ(p3n3 + n4p5). Using Chebyshev’s inequality,

Pr

(∣∣∣∣Z −
(
n

3

)
p3
∣∣∣∣ > t

)
≤ O(n3p3 + n4p5)

t3

Setting t = εp3
(
n
3

)
gives us that

Pr

[
Z /∈ (1± ε)

(
n

3

)
p3
]
≤ n3p3 + n4p5

ϵ2p6n6
=

1

ε2

(
1

n3p3
+

1

n2p

)
,

and for p >> 1√
n
, we see that Z ∈ (1± ε)

(
n
3

)
p3 with probability 1−O(1).
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4 Existence of K2,2 in bipartite graphs

Definition 10 (K2,2, K2,1). A bipartite graph G = (L ⊔ R,E) has a K2,2 subgraph if there exist
distinct a, b ∈ L and c, d ∈ R such that {(a, c), (a, d), (b, c), (b, d)} ⊆ E. G has a K2,1 subgraph if
there exists a ∈ L and distinct b, c ∈ R such that {(a, b), (a, c)} ⊆ E. K2,2 and K2,1 subgraphs are
pictured in Figures 1 and 2.

Figure 1: K2,1 subgraph

Figure 2: K2,2 subgraph

Let G = (L ⊔ R,E) be a bipartite graph with |L| = |R| = n. We want to determine how many
edges guarantee the existence of K2,2 and K2,1 subgraphs in G.

First note that we can use the pigeonhole principle to show that any such bipartite graph with
n+ 1 edges is guaranteed to have a K2,1 subgraph.

For K2,2 subgraphs, the graph as in Figure 3 shows that the maximum number of edges a graph
without having a K2,2 is ≥ 2n.

Figure 3: Bipartite graphs can have 2n edges and no K2,2

We will construct our graph as follows: let L = R = Z/nZ, and let S ⊆ Z/nZ be a subset that
is to be determined. We join each i ∈ L to i + s ∈ R (with addition being done mod n) for each
s ∈ S, so E = {(i, i+ s) : i ∈ L, s ∈ S}. We want to find a suitable set S such that our graph does
not have any K2,2 subgraphs.

If there is a K2,2, then there exist i, j ∈ L and s1, s2, s3, s4 ∈ S such that {(i, i+s1), (i, i+s2), (j, j+
s3), (j, j + s4)} ⊆ E, and i+ s1 = j + s2 and j + s3 = j + s4. Subtracting these equations gives us
s1 − s2 = s3 − s4.
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Question 1. How big of a subset S ⊆ Z/nZ exists such that for all s1, s2, s3, s4 ∈ S, we have
s2 = s1 and s4 = s3 whenever s2 − s1 = s4 − s3?

The true answer to Question 1 is about |S| = Θ(
√
n), which we will not show. It’s easy to find a

set of size |S| = Θ(log n) that satisfies this: consider the set consisting of powers of 2:

S = {1, 2, 4, . . . , 2k}

Then S satisfies the condition mentioned above.

Theorem 11. If a bipartite graph G = (L ⊔ R,E) with |L| = |R| = n has m = ω(n
3
2 ) edges, then

G has a K2,2 subgraph.

Proof. We want to find two vertices in L that have ≥ 2 common neighbours. We will count the
number of tuples (i, j, k) where i, j ∈ L and k ∈ R such that (i, k) ∈ E and (j, k) ∈ E, as in Figure
4.

If E[degree(k)] is the average degree of any vertex k ∈ R and we assume that degree(k) is uniformly
distributed then we denote d = m

n = E[degree(k)] for any k ∈ R. Then,

E [#{(i, j, k) : (i, k) ∈ E and (j, k) ∈ E}] =
∑
k∈R

E
[(

degree(k)

2

)]

≥
∑
k∈R

(
d

2

)
by Jensen’s inequality, as f(x) =

(
x
2

)
= x(x−1)

2 is convex

= n ·
(
m/n

2

)
≥ n

2

(m
n

)2
=

m2

2n
.

We can then use the pigeonhole principle: If the number of tuples (i, j, k) ∈ L × L × R such that
{(i, k), (j, k)} ⊆ E exceeds the number of the 2-element subsets {i, j} ⊆ L, then G has a K2,2

subgraph. Equivalently, if m2

2n >
(
n
2

)
, then G has a K2,2 subgraph, so m = ω(n

3
2 ) guarantees the

existence of a K2,2 subgraph in G.
i

j

k

Figure 4: We count the number of vertices i, j ∈ L and k ∈ R such that (i, k), (j, k) ∈ E.
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5 Line-point incidence graph over Fq

Now we show that the bound in Theorem 11 is tight by constructing a graph with n3/2 edges that
does not have a K2,2. Let Fq be an arbitrary field. Let L denote the set of lines in F2

q , and let R
denote the set of points in F2

q . Namely,

L = {lines in F2
q} = {(m, b) ∈ F2

q}
R = {points in F2

q} = {(x, y) ∈ F2
q}

Let
E = {((m, b), (x, y)) ∈ L×R : (x, y) is a solution to y = mx+ b}.

Note that the graph G = (L⊔R,E) has no K2,2 subgraph, as two distinct lines can intersect in at
most one point.

6 Sidon Sets

We now introduce Sidon sets, which are the formalization of the sets S we discussed in Section 4.

Definition 12 (Sidon Set). A set S ⊆ Z/nZ is a Sidon set if for every a, b, c, d ∈ S, we have
{a, b} = {c, d} whenever a+ b = c+ d.

Claim 13. If S ⊆ Z/nZ is a Sidon set, then |S| ≤ O(
√
n).

Proof. Suppose that S ⊆ Z/nZ is a Sidon set. For any distinct a, b ∈ S, the total number of all
possible sums a + b is at most n (as a + b ∈ Z/nZ), and as there are at most

(|S|
2

)
such distinct

pairs (a, b), this implies that
(|S|

2

)
≤ n, so |S| = O(

√
n), as desired.

Claim 14. There exists a Sidon set S ⊆ Z/nZ with |S| = Ω(n1/4).

Proof. Let p ∈ [0, 1] be a constant to be determined later. For each x ∈ Z/nZ, include x in S with
probability p. We will get a bound for Pr[S is not Sidon].

Fix a, b, c, d ∈ Z/nZ such that a+b = c+d and {a, b} ≠ {c, d}. The probability that {a, b, c, d} ⊆ S is
p4, as each a, b, c, d has a probability p of being in S. Consider the event Ea,b,c,d = “{a, b, c, d} ⊆ S′′.
By the above, we have Pr[Ea,b,c,d] = p4. Then,

Pr[S is not Sidon] = Pr

 ∨
a,b,c,d∈S

Ea,b,c,d

 = p4 · (# of such a, b, c, d) ≤ p4 · n3.

Setting p = n−3/4

100 gives us that Pr[S is not Sidon] ≤ 1
108

, and by Chebyshev’s inequality we have

Pr[|S| < pn
2 ] ≤ 1

np = O
(

1
n1/4

)
. As np

2 = Ω(n1/4) and Pr[S is not Sidon] < 1, this gives us that

there exist Sidon sets S satisfying |S| = Ω(n1/4). Therefore, Pr[|S| ≥ pn
2 and S is Sidon] can be

made arbitrarily large by adjusting p, so most subsets of Z/nZ are Sidon.
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