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1 Basic Probabilistic Inequalities

Definition 1. Let 2 be a finite set, which we call a probability space. A probability measure
be a function p: Q — R satisfying

> u(w) =1
we

Definition 2. An S-valued random wvariable on a probability space 2 is a function f: Q — S.
We may sometimes write “r.v.” to mean “random variable”.

1.1 A toy problem

Suppose we have n fair coins X; each of which is 0 or 1 with equal probability %, suppose further
that each coin toss is independent. Give, with proof, an upper bound on the probability that

Definition 3. If X is an R-valued r.v., we can define the expectation of X by

E[X] := ZPr[X =z|-x
zeR

It is easy to check the following;:

Claim 4 (Linearity of Expectation). If X and Y are R-valued random variables and o € R, then

E[aX + Y] = oE[X] = E[Y].

We now introduce an inequality to help us with the toy problem:
Theorem 5 (Markov’s inequality). If X is a nonnegative R-valued r.v., then for any t > 0 we have

Pr[X >t] < E[t].



Proof. If we set Pr[X > t] = A, then

Elz] => PrX =a]-2+)» El]

<t 2>t
>0+ At

Thus,

Returning to the toy problem, set X = > ;| X;. Then, by the linearity of expectation,
n

> x|

i=1

:ZE[Xi]
=

E[X]=E

Applying Markov’s inequality,

~3n/4 3

Pr [X> —

3n] n/2 2
- < —
- 2

We can get a better bound using Chebyshev’s inequality, which we will state below. First, we
introduce the variance of a random variable:

Definition 6 (Variance). Let X be an R-valued random variable. The variance of X is
Var(X) = E[(X — E[X])%.

Theorem 7 (Chebyshev’s inequality). Let X be a R-valued random variable. For any t > 0, we
have

Var(X
Pr(X — E[X]| > 1] < VoK),
2
Proof. Define Y = (X — E[X])2. Applying Markov’s inequality gives us

E[Y] Var(X)
2 g2

Pr[Y > %] =Pr[VY > ] <

and as VY = |X — E[X]|, we get the desired inequality.



Returning to the toy problem,

Var(X) = E[(X — E[X])?] =E (Z X - ZE[XA>

=E| > (X —EXi])(X; - E[X;)
— Z E[(X; — E[X;])(X; — E[X;])]

= E[(X; —~E[XD*+ ) E[X: - EXDIE[X; - E[X;])]
1<i=j<n 1<i#j<n
’ ’ using independence

For any 1 < i < n, we can compute
<X~ 1>2 o= 4)r= 1 With probability
’ (1-1)?2= % With probability

So taking the sum gives us Var(X) = E[(X; — 1/2)%] = %. Applying Chebyshev’s inequality then
gives

NI N

Var(X) n/4

And setting t = % gives a bound of Pr[|X —n/2| > ¢] < 2.1

We can actually get an even stronger bound if we raised (X — E[X]) to the power of 4 rather
than 2; we would instead have a sum across 1 < 4,7, k,l < n whose terms vanish unless an even
number of i, j, k, I are equal. Plugging this in would give a bound on the order of 1/n%. We can use
Chebyshev-style arguments to get even better bounds.

2 Chernoff Bounds

The aim of this section is to get a better inequality by applying Markov’s inequality to fancier
random variables. Using the random variables defined in the previous section’s toy problem, define
Zi=X;—%and Z=Y", Zi. Fixa >0, and define Y = ¢*?. Then, by Markov’s inequality,
E[eaZ]

¢

Pr[Y > t]=Pr [e“Z > e™] <
ea

Now to compute E[e??], we can use the fact that the Z;’s are independent to get

ﬁeaZi] — ﬁE [eaZi]
=1 =1

E[¢*?] =E [ea(Z1+~-~+Zn)} —F

1 X is positive, so | X —n/2| > n/4 if and only if X > 3n/4.



For every 1 < i < n, we can calculate the expectation of eXi:
1 1

E [eaXi] _ 5 . efa/2 + 5 . ea/2‘
Plugging in this expectation gives the bound
—a/2 a/2\ ™
(= +)
PrlY > ] <
eat

We can then find the best bound possible by minimizing

B efa/2 N ea/2 "
L 2

with respect to a, which we can estimate by the following lemma:

Lemma 8. For any x € R, we have ,
cosh(z) < e /2.

Proof. Comparing Taylor series,

This above bound then gives us

e—a/2 /2 n
< 5 T3
eat

) <€a2/8> 2

eat
— eazn/S—an/Zl

PrlY > ]

IN

Setting a = 1, we get that Pr[Y > n/4] < e"/3-"/4 = ¢="/8 which is significantly smaller than any
of the polynomial bounds we got earlier.

Theorem 9 (Full Chernoff bound on n independent coins). If Xi,..., X, are independent random
variables with Pr[X; = 1] = p, then

5271

>£n] <es

Pr

n
ZXi —np

=1

This gets vanishingly small when ¢ >> 1/y/n, i.e, for arbitrarily small 6 > 0, we can find large
enough n such that

Pr ZXi € [np—k\/ﬁ,np—i—k\/ﬁ]] =1-4.
i=1

4



3 Random graphs

Let G(n,p) denote a graph with n vertices such that each edge shows up independently with
probability p. We want to determine the average number of triangles that G has.

For each potential edge {i,j}, let X;; be the indicator random variable for that edge. For each
potential triangle {7, j},{j,k},{k,i}, let Z; j; be the indicator for that triangle appearing. Then

define
Z= > Zijk
{i.d.kre('s)
The goal of this section is to understand what Z usually is. We first compute its expectation:
EZ)= Y ElZji= Y  EXiEX;EX;s] = (;L)Pg
Gigkye (') {i.gkye (')

We can also compute the variance of Z:

Var(Z) =E —<z - <g‘> p3>2]

r 2
=E || > Zijk—p"
L i7j7k
= - SN - 3
= 2 EllZigu = ") (Zogae =]
1,5,k
l‘/,]./,k?/

Notice that Z; j, and Zy j js are independent whenever [{i,j,k} N {7, j’,k'}| <2, so

VCL’I”(Z) = Z ]E[(Zz,],k — pg)(Zi’,j’,k" — pg)]
i7j7k
il 5 k!
{44,630 {7,437 k' }|>2

=Y El(Zijk =01+ Y. EBl(Zijk—0*)Zijw — %)),
/L"j’k i?j’k
K/ ¢ {i,5,k}

which is around (})p*(1 —p*) + (}) (3) (p® — p%) € O(p*n? + n*p®). Using Chebyshev’s inequality,
n O(n3p3 +n4p5)
Pr(|Z - >t <
Setting t = p®(}) gives us that

3,3 4,5
ny\ 3 n°p’ +n°p 1 1 1
Pr |: ¢ (1 + 6) (3)p :| S 62p6n6 52 (n3p3 n2p ?

and for p >> ﬁ, we see that Z € (1 +¢)(})p® with probability 1 — O(1).
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4 Existence of K55 in bipartite graphs

Definition 10 (K22, K21). A bipartite graph G = (LU R, E)
distinct a,b € L and ¢,d € R such that {(a,c), (a,d), (b,c), (b,d
there exists a € L and distinct b,c € R such that {(a,b), (a,c)}

pictured in Figures 1 and 2.
] :

Figure 1: K51 subgraph

=

Figure 2: K55 subgraph

as a Koo subgraph if there exist
E. G has a Ko subgraph if

h
)} C
C E. Koo and Ko subgraphs are

Let G = (LU R, E) be a bipartite graph with |L| = |R| = n. We want to determine how many
edges guarantee the existence of K2 and K ; subgraphs in G.

First note that we can use the pigeonhole principle to show that any such bipartite graph with
n + 1 edges is guaranteed to have a K31 subgraph.

For K5 subgraphs, the graph as in Figure 3 shows that the maximum number of edges a graph
without having a K32 is > 2n.

Figure 3: Bipartite graphs can have 2n edges and no K3 »

We will construct our graph as follows: let L = R = Z/nZ, and let S C Z/nZ be a subset that
is to be determined. We join each i € L to i + s € R (with addition being done mod n) for each
seS,so E={(i,i+s):i€ L,s € S}. We want to find a suitable set S such that our graph does
not have any K> o subgraphs.

If there is a K o, then there exist ¢,j € L and sy, s2, $3, 54 € S such that {(i,i+s1), (¢,i+s2), (J, j +
s3),(4,j+s4)} CE,and i+ s1 = j + s2 and j + s3 = j + s4. Subtracting these equations gives us
S§1 — 89 = 83 — S4.



Question 1. How big of a subset S C Z/nZ exists such that for all si,s2,s3,54 € S, we have
S9 = 81 and s4 = s3 whenever so — 81 = 84 — 837

The true answer to Question 1 is about |S| = ©(y/n), which we will not show. It’s easy to find a
set of size |S| = ©(logn) that satisfies this: consider the set consisting of powers of 2:

S =1{1,2,4,...,2"}
Then S satisfies the condition mentioned above.

Theorem 11. If a bipartite graph G = (L U R, E) with |L| = |R| = n has m = w(n %) edges, then
G has a Koo subgraph.

Proof. We want to find two vertices in L that have > 2 common neighbours. We will count the
number of tuples (7, j, k) where i,7 € L and k € R such that (i,k) € F and (j, k) € E, as in Figure
4.

If E[degree(k)] is the average degree of any vertex k € R and we assume that degree(k) is uniformly
distributed then we denote d = 7 = E[degree(k)] for any k € R. Then,

E [#{(i,j,k) : (i,k) € E and (j,k) € E}] = ZEKdegree ))}

keER

>3 (1)

by Jensen’s inequality, as f(z) = (5) = x(g_ L is convex

We can then use the pigeonhole principle: If the number of tuples (i,7,k) € L x L x R such that
{(i,k),(4,k)} € E exceeds the number of the 2-element subsets {i,j} C L, then G has a Ka»
subgraph. Equivalently, if %2 > (g), then G has a K> subgraph, so m = w(n%) guarantees the
existence of a K3 o subgraph in G.

i

Figure 4: We count the number of vertices ¢, j € L and k € R such that (i, k), (5, k) € E.



5 Line-point incidence graph over [,

Now we show that the bound in Theorem 11 is tight by constructing a graph with n%/2 edges that
does not have a Ka9. Let F, be an arbitrary field. Let L denote the set of lines in IFZ, and let R
denote the set of points in Fg. Namely,

. . 2 2
L = {lines in F} = {(m,d) € F_}
. . . 21 2
R = {points in F_} = {(z,y) € F}
Let

E ={((m,b),(z,y)) € L x R: (z,y) is a solution to y = mx + b}.

Note that the graph G = (L U R, E') has no K3 3 subgraph, as two distinct lines can intersect in at
most one point.

6 Sidon Sets

We now introduce Sidon sets, which are the formalization of the sets S we discussed in Section 4.

Definition 12 (Sidon Set). A set S C Z/nZ is a Sidon set if for every a,b,c,d € S, we have
{a,b} = {c,d} whenever a +b=c+d.

Claim 13. If S C Z/nZ is a Sidon set, then |S| < O(y/n).

Proof. Suppose that S C Z/nZ is a Sidon set. For any distinct a,b € S, the total number of all
possible sums a + b is at most n (as a + b € Z/nZ), and as there are at most (‘g ‘) such distinct

pairs (a, b), this implies that (‘g‘) <, so |S| = O(y/n), as desired. O

Claim 14. There exists a Sidon set S C 7Z/nZ with |S| = Q(n'/4).

Proof. Let p € [0, 1] be a constant to be determined later. For each z € Z/nZ, include z in S with
probability p. We will get a bound for Pr[S is not Sidon].

Fix a,b,c,d € Z/nZ such that a+b = c+d and {a, b} # {c,d}. The probability that {a, b, c,d} C S'is
p*, as each a, b, ¢, d has a probability p of being in S. Consider the event Eoped= “{a,bc,d} 5",
By the above, we have Pr[E, 4] = p*. Then,

Pr[S is not Sidon] = Pr \/ Eupeal|l =p* - (# of such a,b, ¢, d) < p* - n?.
a,b,c,deS

n

I§é4 gives us that Pr[S is not Sidon] < #, and by Chebyshev’s inequality we have

Pr[|S| < 5] < nip =0 (ﬁ) As %2 = Q(n!/*) and Pr[S is not Sidon] < 1, this gives us that
there exist Sidon sets S satisfying |S| = Q(n'/*). Therefore, Pr[|S| > 2 and S is Sidon] can be
made arbitrarily large by adjusting p, so most subsets of Z/nZ are Sidon.

Setting p =

O



