Lecture 4: Probabilistic Inequalities, Random Graphs, $K_{2,2}$ in Bi partite Graphs

Combinatorial Methods (Winter 2023)
University of Toronto Swastik Kopparty
Scribe: Aaron Ma, Anatoly Zavyalov

1 Basic Probabilistic Inequalities

Definition 1. Let Ω be a finite set, which we call a probability space. A probability measure be a function $\mu: \Omega \rightarrow \mathbb{R}_{\geq 0}$ satisfying

$$
\sum_{w \in \Omega} \mu(w)=1
$$

Definition 2. An S-valued random variable on a probability space Ω is a function $f: \Omega \rightarrow S$. We may sometimes write "r.v." to mean "random variable".

1.1 A toy problem

Suppose we have n fair coins X_{i} each of which is 0 or 1 with equal probability $\frac{1}{2}$, suppose further that each coin toss is independent. Give, with proof, an upper bound on the probability that

$$
\sum_{i=1}^{n} X_{i} \geq \frac{3 n}{4}
$$

Definition 3. If X is an \mathbb{R}-valued r.v., we can define the expectation of X by

$$
\mathbb{E}[X]:=\sum_{x \in \mathbb{R}} \operatorname{Pr}[X=x] \cdot x
$$

It is easy to check the following:
Claim 4 (Linearity of Expectation). If X and Y are \mathbb{R}-valued random variables and $\alpha \in \mathbb{R}$, then

$$
\mathbb{E}[\alpha X+Y]=\alpha \mathbb{E}[X]=\mathbb{E}[Y]
$$

We now introduce an inequality to help us with the toy problem:
Theorem 5 (Markov's inequality). If X is a nonnegative \mathbb{R}-valued r.v., then for any $t>0$ we have

$$
\operatorname{Pr}[X \geq t] \leq \frac{\mathbb{E}[X]}{t}
$$

Proof. If we set $\operatorname{Pr}[X \geq t]=\lambda$, then

$$
\begin{aligned}
\mathbb{E}[x] & =\sum_{x \leq t} \operatorname{Pr}[X=x] \cdot x+\sum_{x \geq t} E[x] \cdot x \\
& \geq 0+\lambda \cdot t
\end{aligned}
$$

Thus,

$$
\lambda \leq \frac{\mathbb{E}[X]}{t} .
$$

Returning to the toy problem, set $X=\sum_{i=1}^{n} X_{i}$. Then, by the linearity of expectation,

$$
\begin{aligned}
\mathbb{E}[X] & =\mathbb{E}\left[\sum_{i=1}^{n} X_{i}\right] \\
& =\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right] \\
& =\frac{n}{2} .
\end{aligned}
$$

Applying Markov's inequality,

$$
\operatorname{Pr}\left[X \geq \frac{3 n}{2}\right] \leq \frac{n / 2}{3 n / 4}=\frac{2}{3} .
$$

We can get a better bound using Chebyshev's inequality, which we will state below. First, we introduce the variance of a random variable:

Definition 6 (Variance). Let X be an \mathbb{R}-valued random variable. The variance of X is

$$
\operatorname{Var}(X)=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right] .
$$

Theorem 7 (Chebyshev's inequality). Let X be $a \mathbb{R}$-valued random variable. For any $t>0$, we have

$$
\operatorname{Pr}[|X-\mathbb{E}[X]|>t] \leq \frac{\operatorname{Var}(X)}{t^{2}}
$$

Proof. Define $Y=(X-\mathbb{E}[X])^{2}$. Applying Markov's inequality gives us

$$
\operatorname{Pr}\left[Y \geq t^{2}\right]=\operatorname{Pr}[\sqrt{Y} \geq t] \leq \frac{\mathbb{E}[Y]}{t^{2}}=\frac{\operatorname{Var}(X)}{t^{2}}
$$

and as $\sqrt{Y}=|X-\mathbb{E}[X]|$, we get the desired inequality.

Returning to the toy problem,

$$
\begin{aligned}
\operatorname{Var}(X) & =\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]=\mathbb{E}\left[\left(\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} \mathbb{E}\left[X_{i}\right]\right)^{2}\right] \\
& =\mathbb{E}\left[\sum_{1 \leq i, j \leq n}\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)\left(X_{j}-\mathbb{E}\left[X_{j}\right]\right)\right] \\
& =\sum_{1 \leq i, j \leq n} \mathbb{E}\left[\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)\left(X_{j}-\mathbb{E}\left[X_{j}\right]\right)\right] \\
& =\sum_{1 \leq i=j \leq n} \mathbb{E}\left[\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)^{2}\right]+\sum_{1 \leq i \neq j \leq n} \mathbb{E}\left[\left(X_{i}-\mathbb{E}\left[X_{i}\right]\right)\right] \mathbb{E}\left[\left(X_{j}-\mathbb{E}\left[X_{j}\right]\right)\right] \\
& =\sum_{i=1}^{n} \mathbb{E}\left[\left(X_{i}-\frac{1}{2}\right)^{2}\right]
\end{aligned}
$$

For any $1 \leq i \leq n$, we can compute

$$
\left(X_{i}-\frac{1}{2}\right)^{2}= \begin{cases}\left(0-\frac{1}{2}\right)^{2}=\frac{1}{4} \quad \text { With probability } \frac{1}{2} \\ \left(1-\frac{1}{2}\right)^{2}=\frac{1}{4} \quad \text { With probability } \frac{1}{2}\end{cases}
$$

So taking the sum gives us $\operatorname{Var}(X)=\mathbb{E}\left[\left(X_{i}-1 / 2\right)^{2}\right]=\frac{n}{4}$. Applying Chebyshev's inequality then gives

$$
\operatorname{Pr}[|X-n / 2|>t] \leq \frac{\operatorname{Var}(X)}{t^{2}}=\frac{n / 4}{t^{2}}
$$

And setting $t=\frac{n}{4}$ gives a bound of $\operatorname{Pr}[|X-n / 2|>t] \leq \frac{4}{n}$. ${ }^{1}$
We can actually get an even stronger bound if we raised $(X-\mathbb{E}[X])$ to the power of 4 rather than 2 ; we would instead have a sum across $1 \leq i, j, k, l \leq n$ whose terms vanish unless an even number of i, j, k, l are equal. Plugging this in would give a bound on the order of $1 / n^{2}$. We can use Chebyshev-style arguments to get even better bounds.

2 Chernoff Bounds

The aim of this section is to get a better inequality by applying Markov's inequality to fancier random variables. Using the random variables defined in the previous section's toy problem, define $Z_{i}=X_{i}-\frac{1}{2}$ and $Z=\sum_{i=1}^{n} Z i$. Fix $a>0$, and define $Y=e^{a Z}$. Then, by Markov's inequality,

$$
\operatorname{Pr}[Y>t]=\operatorname{Pr}\left[e^{a Z}>e^{a t}\right] \leq \frac{\mathbb{E}\left[e^{a Z}\right]}{e^{a t}}
$$

Now to compute $\mathbb{E}\left[e^{a Z}\right]$, we can use the fact that the Z_{i} 's are independent to get

$$
\mathbb{E}\left[e^{a Z}\right]=\mathbb{E}\left[e^{a\left(Z_{1}+\cdots+Z_{n}\right)}\right]=\mathbb{E}\left[\prod_{i=1}^{n} e^{a Z_{i}}\right]=\prod_{i=1}^{n} \mathbb{E}\left[e^{a Z_{i}}\right]
$$

[^0]For every $1 \leq i \leq n$, we can calculate the expectation of $e^{a X_{i}}$:

$$
\mathbb{E}\left[e^{a X_{i}}\right]=\frac{1}{2} \cdot e^{-a / 2}+\frac{1}{2} \cdot e^{a / 2}
$$

Plugging in this expectation gives the bound

$$
\operatorname{Pr}[Y>t] \leq \frac{\left(\frac{e^{-a / 2}}{2}+\frac{e^{a / 2}}{2}\right)^{n}}{e^{a t}}
$$

We can then find the best bound possible by minimizing

$$
r=\left(\frac{e^{-a / 2}}{2}+\frac{e^{a / 2}}{2}\right)^{n}
$$

with respect to a, which we can estimate by the following lemma:
Lemma 8. For any $x \in \mathbb{R}$, we have

$$
\cosh (x) \leq e^{x^{2} / 2}
$$

Proof. Comparing Taylor series,

$$
\cosh (x)=\frac{e^{x}+e^{-x}}{2}=\sum_{k=0}^{\infty} \frac{1}{(2 k)!} x^{2 k} \leq \sum_{k=0}^{\infty} \frac{1}{2^{k} k!} x^{2 k}=e^{x^{2} / 2}
$$

This above bound then gives us

$$
\begin{aligned}
\operatorname{Pr}[Y>t] & \leq \frac{\left(\frac{e^{-a / 2}}{2}+\frac{e^{a / 2}}{2}\right)^{n}}{e^{a t}} \\
& \leq \frac{\left(e^{a^{2} / 8}\right)^{2}}{e^{a t}} \\
& =e^{a^{2} n / 8-a n / 4}
\end{aligned}
$$

Setting $a=1$, we get that $\operatorname{Pr}[Y>n / 4] \leq e^{n / 8-n / 4}=e^{-n / 8}$, which is significantly smaller than any of the polynomial bounds we got earlier.
Theorem 9 (Full Chernoff bound on n independent coins). If X_{1}, \ldots, X_{n} are independent random variables with $\operatorname{Pr}\left[X_{i}=1\right]=p$, then

$$
\operatorname{Pr}\left[\left|\sum_{i=1}^{n} X_{i}-n p\right|>\varepsilon n\right] \leq e^{\frac{\varepsilon^{2} n}{3}}
$$

This gets vanishingly small when $\varepsilon \gg 1 / \sqrt{n}$, i.e, for arbitrarily small $\delta>0$, we can find large enough n such that

$$
\operatorname{Pr}\left[\sum_{i=1}^{n} X_{i} \in[n p-k \sqrt{n}, n p+k \sqrt{n}]\right]=1-\delta
$$

3 Random graphs

Let $G(n, p)$ denote a graph with n vertices such that each edge shows up independently with probability p. We want to determine the average number of triangles that G has.

For each potential edge $\{i, j\}$, let $X_{i, j}$ be the indicator random variable for that edge. For each potential triangle $\{i, j\},\{j, k\},\{k, i\}$, let $Z_{i, j, k}$ be the indicator for that triangle appearing. Then define

$$
Z=\sum_{\{i, j, k\} \in\binom{[n]}{3}} Z_{i, j, k}
$$

The goal of this section is to understand what Z usually is. We first compute its expectation:

$$
\mathbb{E}[Z]=\sum_{\{i, j, k\} \in\binom{[n]}{3}} \mathbb{E}\left[Z_{i, j, k}\right]=\sum_{\{i, j, k\} \in\binom{[n]}{3}} \mathbb{E}\left[X_{i, j}\right] \mathbb{E}\left[X_{j, k}\right] \mathbb{E}\left[X_{i, k}\right]=\binom{n}{3} p^{3}
$$

We can also compute the variance of Z :

$$
\begin{aligned}
\operatorname{Var}(Z) & =\mathbb{E}\left[\left(Z-\binom{n}{3} p^{3}\right)^{2}\right] \\
& =\mathbb{E}\left[\left(\sum_{i, j, k} Z_{i, j, k}-p^{3}\right)^{2}\right] \\
& =\sum_{\substack{i, j, k \\
i^{\prime}, j^{\prime}, k^{\prime}}} \mathbb{E}\left[\left(Z_{i, j, k}-p^{3}\right)\left(Z_{i^{\prime}, j^{\prime}, k^{\prime}}-p^{3}\right)\right]
\end{aligned}
$$

Notice that $Z_{i, j, k}$ and $Z_{i^{\prime}, j^{\prime}, k^{\prime}}$ are independent whenever $\left|\{i, j, k\} \cap\left\{i^{\prime}, j^{\prime}, k^{\prime}\right\}\right|<2$, so

$$
\begin{aligned}
\operatorname{Var}(Z) & =\sum_{\substack{i, j, k \\
i, j, k \\
i^{\prime}, k^{\prime} \\
\left|\{i, j, k\} \cap\left\{i^{\prime}, j^{\prime}, k^{\prime}\right\}\right| \geq 2}} \mathbb{E}\left[\left(Z_{i, j, j, k}-p^{3}\right)\left(Z_{i^{\prime}, j^{\prime}, k^{\prime}}-p^{3}\right)\right] \\
& =\sum_{i, j, k} \mathbb{E}\left[\left(Z_{i, j, k}-p^{3}\right)^{2}\right]+\sum_{\substack{\left.i, j, k \\
k^{\prime} \notin i, j, j, k\right\}}} \mathbb{E}\left[\left(Z_{i, j, k}-p^{3}\right)\left(Z_{i^{\prime}, j^{\prime}, k^{\prime}}-p^{3}\right)\right],
\end{aligned}
$$

which is around $\binom{n}{k} p^{3}\left(1-p^{3}\right)+\binom{n}{4}\binom{4}{2}\left(p^{5}-p^{6}\right) \in \Theta\left(p^{3} n^{3}+n^{4} p^{5}\right)$. Using Chebyshev's inequality,

$$
\operatorname{Pr}\left(\left|Z-\binom{n}{3} p^{3}\right|>t\right) \leq \frac{\mathcal{O}\left(n^{3} p^{3}+n^{4} p^{5}\right)}{t^{3}}
$$

Setting $t=\varepsilon p^{3}\binom{n}{3}$ gives us that

$$
\operatorname{Pr}\left[Z \notin(1 \pm \varepsilon)\binom{n}{3} p^{3}\right] \leq \frac{n^{3} p^{3}+n^{4} p^{5}}{\epsilon^{2} p^{6} n^{6}}=\frac{1}{\varepsilon^{2}}\left(\frac{1}{n^{3} p^{3}}+\frac{1}{n^{2} p}\right),
$$

and for $p \gg \frac{1}{\sqrt{n}}$, we see that $Z \in(1 \pm \varepsilon)\binom{n}{3} p^{3}$ with probability $1-\mathcal{O}(1)$.

4 Existence of $K_{2,2}$ in bipartite graphs

Definition $10\left(K_{2,2}, K_{2,1}\right)$. A bipartite graph $G=(L \sqcup R, E)$ has a $K_{2,2}$ subgraph if there exist distinct $a, b \in L$ and $c, d \in R$ such that $\{(a, c),(a, d),(b, c),(b, d)\} \subseteq E$. G has a $K_{2,1}$ subgraph if there exists $a \in L$ and distinct $b, c \in R$ such that $\{(a, b),(a, c)\} \subseteq E . K_{2,2}$ and $K_{2,1}$ subgraphs are pictured in Figures 1 and 2.

Figure 1: $K_{2,1}$ subgraph

Figure 2: $K_{2,2}$ subgraph
Let $G=(L \sqcup R, E)$ be a bipartite graph with $|L|=|R|=n$. We want to determine how many edges guarantee the existence of $K_{2,2}$ and $K_{2,1}$ subgraphs in G.

First note that we can use the pigeonhole principle to show that any such bipartite graph with $n+1$ edges is guaranteed to have a $K_{2,1}$ subgraph.

For $K_{2,2}$ subgraphs, the graph as in Figure 3 shows that the maximum number of edges a graph without having a $K_{2,2}$ is $\geq 2 n$.

Figure 3: Bipartite graphs can have $2 n$ edges and no $K_{2,2}$

We will construct our graph as follows: let $L=R=\mathbb{Z} / n \mathbb{Z}$, and let $S \subseteq \mathbb{Z} / n \mathbb{Z}$ be a subset that is to be determined. We join each $i \in L$ to $i+s \in R$ (with addition being done $\bmod n$) for each $s \in S$, so $E=\{(i, i+s): i \in L, s \in S\}$. We want to find a suitable set S such that our graph does not have any $K_{2,2}$ subgraphs.
If there is a $K_{2,2}$, then there exist $i, j \in L$ and $s_{1}, s_{2}, s_{3}, s_{4} \in S$ such that $\left\{\left(i, i+s_{1}\right),\left(i, i+s_{2}\right),(j, j+\right.$ $\left.\left.s_{3}\right),\left(j, j+s_{4}\right)\right\} \subseteq E$, and $i+s_{1}=j+s_{2}$ and $j+s_{3}=j+s_{4}$. Subtracting these equations gives us $s_{1}-s_{2}=s_{3}-s_{4}$.

Question 1. How big of a subset $S \subseteq \mathbb{Z} / n \mathbb{Z}$ exists such that for all $s_{1}, s_{2}, s_{3}, s_{4} \in S$, we have $s_{2}=s_{1}$ and $s_{4}=s_{3}$ whenever $s_{2}-s_{1}=s_{4}-s_{3}$?

The true answer to Question 1 is about $|S|=\Theta(\sqrt{n})$, which we will not show. It's easy to find a set of size $|S|=\Theta(\log n)$ that satisfies this: consider the set consisting of powers of 2 :

$$
S=\left\{1,2,4, \ldots, 2^{k}\right\}
$$

Then S satisfies the condition mentioned above.
Theorem 11. If a bipartite graph $G=(L \sqcup R, E)$ with $|L|=|R|=n$ has $m=\omega\left(n^{\frac{3}{2}}\right)$ edges, then G has a $K_{2,2}$ subgraph.

Proof. We want to find two vertices in L that have ≥ 2 common neighbours. We will count the number of tuples (i, j, k) where $i, j \in L$ and $k \in R$ such that $(i, k) \in E$ and $(j, k) \in E$, as in Figure 4.

If $\mathbb{E}[$ degree $(k)]$ is the average degree of any vertex $k \in R$ and we assume that degree (k) is uniformly distributed then we denote $\bar{d}=\frac{m}{n}=\mathbb{E}[\operatorname{degree}(k)]$ for any $k \in R$. Then,

$$
\begin{aligned}
\mathbb{E}[\#\{(i, j, k):(i, k) \in E \text { and }(j, k) \in E\}] & =\sum_{k \in R} \mathbb{E}\left[\binom{\operatorname{degree}(k)}{2}\right] \\
& \geq \sum_{k \in R}\binom{\bar{d}}{2}
\end{aligned}
$$

by Jensen's inequality, as $f(x)=\binom{x}{2}=\frac{x(x-1)}{2}$ is convex

$$
\begin{aligned}
& =n \cdot\binom{m / n}{2} \\
& \geq \frac{n}{2}\left(\frac{m}{n}\right)^{2} \\
& =\frac{m^{2}}{2 n} .
\end{aligned}
$$

We can then use the pigeonhole principle: If the number of tuples $(i, j, k) \in L \times L \times R$ such that $\{(i, k),(j, k)\} \subseteq E$ exceeds the number of the 2-element subsets $\{i, j\} \subseteq L$, then G has a $K_{2,2}$ subgraph. Equivalently, if $\frac{m^{2}}{2 n}>\binom{n}{2}$, then G has a $K_{2,2}$ subgraph, so $m=\omega\left(n^{\frac{3}{2}}\right)$ guarantees the existence of a $K_{2,2}$ subgraph in G.

Figure 4: We count the number of vertices $i, j \in L$ and $k \in R$ such that $(i, k),(j, k) \in E$.

5 Line-point incidence graph over \mathbb{F}_{q}

Now we show that the bound in Theorem 11 is tight by constructing a graph with $n^{3 / 2}$ edges that does not have a $K_{2,2}$. Let \mathbb{F}_{q} be an arbitrary field. Let L denote the set of lines in \mathbb{F}_{q}^{2}, and let R denote the set of points in \mathbb{F}_{q}^{2}. Namely,

$$
\begin{array}{r}
L=\left\{\text { lines in } \mathbb{F}_{q}^{2}\right\}=\left\{(m, b) \in \mathbb{F}_{q}^{2}\right\} \\
R=\left\{\text { points in } \mathbb{F}_{q}^{2}\right\}=\left\{(x, y) \in \mathbb{F}_{q}^{2}\right\}
\end{array}
$$

Let

$$
E=\{((m, b),(x, y)) \in L \times R:(x, y) \text { is a solution to } y=m x+b\} .
$$

Note that the graph $G=(L \sqcup R, E)$ has no $K_{2,2}$ subgraph, as two distinct lines can intersect in at most one point.

6 Sidon Sets

We now introduce Sidon sets, which are the formalization of the sets S we discussed in Section 4.
Definition 12 (Sidon Set). A set $S \subseteq \mathbb{Z} / n \mathbb{Z}$ is a Sidon set if for every $a, b, c, d \in S$, we have $\{a, b\}=\{c, d\}$ whenever $a+b=c+d$.
Claim 13. If $S \subseteq \mathbb{Z} / n \mathbb{Z}$ is a Sidon set, then $|S| \leq \mathcal{O}(\sqrt{n})$.

Proof. Suppose that $S \subseteq \mathbb{Z} / n \mathbb{Z}$ is a Sidon set. For any distinct $a, b \in S$, the total number of all possible sums $a+b$ is at most $n($ as $a+b \in \mathbb{Z} / n \mathbb{Z})$, and as there are at most $\binom{|S|}{2}$ such distinct pairs (a, b), this implies that $\binom{|S|}{2} \leq n$, so $|S|=\mathcal{O}(\sqrt{n})$, as desired.

Claim 14. There exists a Sidon set $S \subseteq \mathbb{Z} / n \mathbb{Z}$ with $|S|=\Omega\left(n^{1 / 4}\right)$.
Proof. Let $p \in[0,1]$ be a constant to be determined later. For each $x \in \mathbb{Z} / n \mathbb{Z}$, include x in S with probability p. We will get a bound for $\operatorname{Pr}[S$ is not Sidon $]$.
Fix $a, b, c, d \in \mathbb{Z} / n \mathbb{Z}$ such that $a+b=c+d$ and $\{a, b\} \neq\{c, d\}$. The probability that $\{a, b, c, d\} \subseteq S$ is p^{4}, as each a, b, c, d has a probability p of being in S. Consider the event $E_{a, b, c, d}=$ " $\{a, b, c, d\} \subseteq S^{\prime \prime}$. By the above, we have $\operatorname{Pr}\left[E_{a, b, c, d}\right]=p^{4}$. Then,

$$
\operatorname{Pr}[S \text { is not Sidon }]=\operatorname{Pr}\left[\bigvee_{a, b, c, d \in S} E_{a, b, c, d}\right]=p^{4} \cdot(\# \text { of such } a, b, c, d) \leq p^{4} \cdot n^{3} .
$$

Setting $p=\frac{n^{-3 / 4}}{100}$ gives us that $\operatorname{Pr}[S$ is not Sidon $] \leq \frac{1}{10^{8}}$, and by Chebyshev's inequality we have $\operatorname{Pr}\left[|S|<\frac{p n}{2}\right] \leq \frac{1}{n p}=\mathcal{O}\left(\frac{1}{n^{1 / 4}}\right)$. As $\frac{n p}{2}=\Omega\left(n^{1 / 4}\right)$ and $\operatorname{Pr}[S$ is not Sidon $]<1$, this gives us that there exist Sidon sets S satisfying $|S|=\Omega\left(n^{1 / 4}\right)$. Therefore, $\operatorname{Pr}\left[|S| \geq \frac{p n}{2}\right.$ and S is Sidon] can be made arbitrarily large by adjusting p, so most subsets of $\mathbb{Z} / n \mathbb{Z}$ are Sidon.

[^0]: ${ }^{1} X$ is positive, so $|X-n / 2|>n / 4$ if and only if $X>3 n / 4$.

