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1 Extremal Combinatorics: Intersecting Family

Extremal combinatorics studies how large (or small) a collection of finite objects can be, if it has
to satisfy certain restrictions. Here we consider the example of intersecting families of sets. Recall
that [n] := {1, 2, . . . , n}. A family F ⊂ P([n]) is intersecting if for all A,B ∈ F , A ∩B ̸= ∅.

Examples

1. {1}, {1, 2}, {1, 2, 3}, . . . , {1, 2, 3, . . . n} form an intersecting family of size n.

2. Let
(

[n]
n−1

)
be the collection of all subsets of [n] of size n− 1. This is an intersecting family of

size n.

3. Let
( [n]
>n/2

)
be the collection of all subsets of size > n/2. This is an intersecting family of size

2n−1 if n is odd, and size 1
2(2

n −
(

n
n/2

)
) if n is even.

4. All subsets of [n] that contain 1 form an intersecting family of size 2n−1

In fact, the largest intersecting family F ⊂ P([n]) has size 2n−1. To see this, pair up each set
A ⊂ [n] with its complement Ac. Clearly there are 2n−1 such pairs. By the pigeon hole principle,
if |F| > 2n−1, then there must exist A ⊂ [n] such that A,Ac ∈ F . But then F would not be
intersecting.

A related problem is the Erdös-Ko-Rado problem: given n, k ∈ N, what is the size of the largest
intersecting family F ⊂

([n]
k

)
?

If k > n
2 , then clearly

([n]
k

)
itself is an intersecting family, so F can have size

(
n
k

)
.

If k ≤ n
2 , then we can consider the collection of all size k subsets that contain a particular element,

same as before in example 4. Such collection has size
(
n−1
k−1

)
. It turns out that in this case,

(
n−1
k−1

)
is

the largest size an intersecting family can have.

Theorem 1. (EKR Theorem): For k < n
2 ,

(
n−1
k−1

)
is the largest size for any intersecting family

F ⊂
([n]
k

)
.

A necklace made out of the letters 1, . . . , n is a string that contains each letter exactly once and
written along a circle in the clockwise direction. Two strings represent the same necklace if one
can be obtained by rotating the other clockwise for some integer number of letters.
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More formally, each such string can be identified with a permutation on [n]. From this perspective,
we can define an equivalence relation on the permutation group Sn where σ, τ ∈ Sn are equivalent
if there exists some k ∈ N such that

(1 2 . . . n)kσ = τ

and a necklace is simply an equivalence class. Since (1 2 . . . n) has order n, it follows that the set
of all necklaces has size (n− 1)!. With this definition, we now prove the EKR theorem.

Proof. Let F ⊂
([n]
k

)
be an intersecting family. Pick a necklace a1 . . . an uniformly at random.

Consider the n length-k substrings of this necklace. View these substrings as sets S1, . . . , Sn: S1 =
{a1, a2, . . . ak}, S2 = {a2, a3, . . . , ak+1}, . . ., Sn = {an, a1, . . . , ak−1}. Let Z = {S1, . . . , Sn}. Since
k < n/2, for any 1 ≤ m ≤ n, there can be at most k sets in Z (including Sm itself) that intersect
Sm. Thus at most k of Si’s can be in F . Consider the random variable X =

∑
A∈F 1[A ∈ Z]. On

one hand, clearly X = |F ∩Z|, which we just showed is at most than k. So EX ≤ k. On the other
hand:

EX =
∑
A∈F

E1[A ∈ Z]

=
∑
A∈F

Pr(A ∈ Z) ⋆

Since the necklace is chosen uniformly at random, any set A ∈
([n]
k

)
has the same probability of

being in Z. Since |Z| = n, we have: ∑
A∈([n]

k )

1[A ∈ Z] = n

and hence

E
( ∑
A∈([n]

k )

1[A ∈ Z]
)
= n

∑
A∈([n]

k )

E1[A ∈ Z] = n

∑
A∈([n]

k )

Pr(A ∈ Z) = n

which implies for any A ∈
([n]
k

)
,

Pr(A ∈ Z) =
n(
n
k

)
apply this to ⋆:

k ≥ EX =
∑
A∈F

Pr(A ∈ Z) = |F| · n(
n
k

)
|F| ≤ k

n

(
n

k

)
=

(
n− 1

k − 1

)
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2 The Ballot Theorem and Catalan numbers

The necklaces defined in the previous section has surprising applications to other combinatorial
problems. Here we consider the Catalan numbers in the following setup: given the n × n grid in
R2 with corners (0, 0), (0, n), (n, n), (n, 0), we are interested in paths that go from (0, 0) to (n, n)
under the restriction that in each step, we are only allowed to go right or up by 1 unit. Clearly
there are

(
2n
n

)
such paths in total because we have to make 2n steps, n of which must go up. But

how many paths are there that do not go above the diagonal?

Fact 2. If we take n steps where each step must go either up or right, then the probability of landing
on the diagonal is (

n

n/2

)
≈ Θ(

1√
n2n

)

Fact 3. The number of paths that do not go above the diagonal is the nth Catalan number

1

n+ 1

(
2n

n

)

We will show a proof of Fact 3 using the Ballot theorem, which involves necklaces made out of +1’s
and −1’s. For any such necklace, we say that a gem (meaning a letter on the circle) is special if
the n partial sums that start there and goes in the clockwise direction are all positive.

Theorem 4. (Ballot Theorem): Any necklace made of a +1’s and b -1’s has a− b special gems.

Proof. Clearly any -1 or any +1 that is immediately followed by a -1 is not a special gem. Moreover,
removing a consecutive (+1,-1) pair does not change the set of special gems. This is because for
any special gem, any of its partial sum that ends before the (+1, -1) pair is positive, and it stays
positive after the removal. The other partial sums are also positive because they are positive prior
to the removal and the pair sums to 0. We can then keep removing pairs of the form (+1, -1) and
stop when either a (the number of 1’s) or b (the number of -1’s) reaches zero. If a reaches zero first,
then in the original necklace, each +1 falls in some (+1, -1) pair, so there are no special gems. If b
reaches zero first, then the number of 1’s remaining is a− b and they are all special gems since any
-1 is cancelled out by its preceding +1 and thus has no effect on the partial sums.

Catalan Numbers Via Ballot Theorem

Consider length 2n+1 necklaces with n+1 1’s and n -1’s. How many special gems are there? Every
such necklace has one special gem. Let’s view this as a walk. Write a1, a2, · · · , a2n. +1 corresponds
to the right and -1 corresponds to up. Now we have a Catalan walk. We conclude that for every
necklace there is a Catalan walk. So the number of Catalan walks = 1

2n+1

(
2n+1
n+1

)
.

Remark: If the second last one is +1, we derive a contradiction (it must be special as well). Thus,
we can say that the last step has to be +1, and the second last has to be -1.
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3 Fermat’s Little Theorem

It is a statement in number theory: P is prime, a ∈ N , and ap :− a (mod p). Consider the set of
necklaces of length p whose gems are elements of 1,2,· · · , a (i.e. [a]).

Q*: How many necklaces are there?

Q: How many strings are there? A: ap.

Q: How many different necklaces does one string give? A: p.

Thus, we can answer Q*.
∑

necklaces b deg(b) = ap.. deg(necklace b) = the number of different
strings that we can get when we swap and write out the necklace. If necklace b = b1, · · · , bn has
degree d, then d|n and b = (b1 ∗ · · · ∗ bn/2)n/d (repeated n/d times). This converse is also true; this

is an if and only if statement. The orbit of a string, σ, is 2p

stabilizer(σ)
. Some of the orbits are of

size p. Some are size one.

Q: How many orbits are there of size 1? A: There are a orbits of size 1. There are m orbits of size
m. m ∗ p+ a = ap =⇒ ap = a (mod p).

Note: Action of Zp on [a]p is i ∗ (σ1σ2 · · ·σp) = (σi+1σi+2) · · ·σp+i).

There is a generalization of Fermat’s Little Theorem: We have that the number of necklaces of size
p = a+ ap−a

p . What is the formula for a general length, n? We will count the number of divisor of
the degree n or less. How many necklaces are of size 2n+1 of made of n+1 1’s and n -1’s? It cannot
be periodic (n+1 and 2n+1 are relatively prime). Every necklace has degree 2n+1. Suggestion:
We should look at the distinct primes dividing n.

Number of necklaces of size n =
∑

d|n number of necklaces of degree exactly d. Let ud be the num-
ber of necklaces of degree exactly d. Note: a is fixed. Let vd be the number of strings of degree
dividing d coming from . vd =

∑
k|d uk (k—d is all k’s that divide d). We have a formula for vd.

vd = an/d

. This is a special system of equation related to the Mobius function. We will now spend time to
understand the Mobius function.

Mobius inversion

For any partial order, there is a Mobius inversion formula. First, we define a function µ :
{1, 2, · · · } → {−1, 0, 1}. µ(pe11 pe22 · · · pekn ) = 0 if any ei ≥ 2, (−1)k otherwise.

If f,g: {1, 2, 3, · · · } → R and g(n) =
∑

k|n f(k). Then, f(z) =
∑

l|z g(l) ∗ µ(
z
l ).

Consider ∑
l|z

g(l)µ(z/l) =
∑
l/z

(
∑
k/l

f(k)) ∗ u(z/l)

=
∑
k/l

(
∑

i such that k|l|z

µ(z/l)) ∗ f(k) = (∗)f(z)
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The last equality is a claim that we will now prove.

Lemma: For all m,
∑

l|m µ(l) = 1 if m = 1 and 0 otherwise.

This is the uniquely defining property of µ.

Claim: From the lemma we want to show that for any k|z,
∑

l s.t. k|l|z µ(z/l) = 1 if k =2 and
0 otherwise. The Mobius function is a function that comes out this poset. So there is a general
Mobius function for every poset.

This helps us because we now have that uz =
∑

l|z a
n/lµ(z/l).

Thus, total number of necklaces of length n =
∑

z|n uz.

Sanity check: Suppose n = p. Total number of necklaces = u1 + up.

u1 = 1/1a;up =
a ∗ p ∗ 1 + a(−1)

p
=

a ∗ p− a

p

This makes sense.

Let n = q*p, q,p prime.

Number of necklaces = u1 + up + uq + upq. We will get that

upq = 1/pq ∗ (apq − ap − ap + a).
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