
Lecture 2

Combinatorial Methods (Winter 2023)
University of Toronto

Swastik Kopparty
Scribes: Arkaprava Choudhury and Andrew Feng

Agenda

In the previous lecture, we defined what a matching in a graph means, and in particular, we focused
on matchings in bipartite graphs. We saw how to find perfect matchings quickly, if they exist, by
using augmenting paths, and also how to determine when no perfect matching exists. In (the first
half of) this lecture, we will look at another way to find out when a bipartite graph permits a
perfect matching.

We will also define chains and antichains in a partially ordered set and prove Dilworth’s theorem
in (the second half of) this lecture.

But first, a quick note that the grading scheme of this course will consist of the following: 50% of
the grade will be from the homework sets, the final exam will constitute 35% of the final grade,
and the remaining 15% will be from scribing lectures.

1 Monte-Carlo matchings in bipartite graphs

Let G = (V,E) be a (finite) bipartite graph with V = L ⊔ R, where |L| = |R| = n. We would like
to determine, given G, an expression for the total number of perfect matchings possible in G.

First, identify L and R with [n] = {1, . . . , n}, and let A ∈ {0, 1}n×n be a n × n matrix where, for
every x ∈ L and y ∈ R, we have Axy ∈ {0, 1} given by

Axy =

{
0, no edge between x and y

1, otherwise

Then, note that G is a subgraph of the complete bipartite graph Kn,n. Thus, a perfect matching in
G is also a matching in Kn,n. By generalization, all perfect matchings in G are perfect matchings
in Kn,n, but not necessarily vice versa. This allows us to note that the number of perfect matchings
in G can be expressed as shown in the following equation, by using the characteristic variable 1
which is 1 if its condition is true and 0 otherwise, where the summation involves all M which are
perfect matchings of Kn,n. ∑

M

1M⊆E

1

Now, note that 1M⊆E evaluates to 1 if and only if for all xy ∈ M , we have Axy = 1, i.e. if and only
if
∏

xy∈M Axy = 1, and otherwise evaluates to 0. Next, observe that the set of all perfect matchings
M of Kn,n is isomorphic to the permutation group Sn. Indeed, when defining a matching M , to
each vertex x ∈ L ∼= [n], we are simply assigning one unique neighbour y = πM (i) ∈ R ∼= [n]. Thus,
we can simplify the above expression as follows∑

M

1M⊆E =
∑
M

∏
xy∈M

Axy =
∑
π∈Sn

∏
i∈[n]

Ai,π(i) = perm(A). (called the permanent of A)

While computing the permanent of a matrix is known to be #P-hard, we know how to compute the
determinant efficiently. This makes the determinant a much easier concept to use in our expressions,
and we try to make use of this fact.

Theorem 1. For a n× n matrix T , its determinant is det(T) =
∑

π∈Sn
(−1)sgn(π)

∏
i∈[n] Ti,π(i).

Fact 2. Using the triangle inequality, it is easy to see that if det(A) ̸= 0, then perm(A) ̸= 0 which
would then imply the existence of some perfect matching for G.

Indeed, to see this, note that

| det(A)| =

∣∣∣∣∣∣
∑
π∈Sn

(−1)sgn(π)
∏
i∈[n]

Ai,π(i)

∣∣∣∣∣∣ <
∑
π∈Sn

∣∣∣∣∣∣(−1)sgn(π)
∏
i∈[n]

Ai,π(i)

∣∣∣∣∣∣ =
∑
π∈Sn

∏
i∈[n]

Ai,π(i) = perm(A)

(all terms in A positive)

Now, since we showed that the permanent of A evaluates to the number of perfect matchings in G,
then 0 < |det(A)| would imply that there must exist at least |det(A)| many perfect matchings in
G. In particular, there is at least one matching.

On the other hand, the converse need not be true. If det(A) = 0, it could be the case that there
were just as many perfect matchings arising from even permutations as those arising from odd
permutations, and the test is inconclusive. This, however, is a very delicate scenario, so we aim to
throw it off by randomly changing the matrix we use, by constructing an algorithm as follows. Here,
let N be some constant which we will set appropriately at the end. Note that, in the algorithm

Algorithm 1
Inputs: Bipartite graph G = (L ⊔R,E) with |L| = |R| = n

1. Identify L and R with [N]. Create a n× n matrix B ∈ [N]n×n as follows.

Bij =

{
0, no edge from i ∈ L to j ∈ R

uniformly random element of [N], otherwise.

2. Compute det(B).

3. If det(B) is non-zero, then declare “G has a perfect matching”; else, declare “G probably has
no perfect matching”.

2

described above, the probability is not with respect to G, which is fixed, but it is instead with
respect to the randomness of the algorithm. Now we look at how the algorithm responds to the
two cases where G either has or doesn’t have a perfect matching, and if it responds correctly with
good probability.

Theorem 3. If G has no perfect matching, then Algorithm 1 declares “G probably has no perfect
matching” with probability 1.

Proof. Suppose G has no perfect matching. Then, for all π ∈ Sn, we will have
∏

i∈[n]Bi,π(i) = 0.
Indeed, for any such π, there must be one term Bi,π(i) which is zero, or else, we would have a perfect
matching at hand. This readily implies

det(B) =
∑
π∈Sn

(−1)sgn(π)
∏
i∈[n]

Bi,π(i) =
∑
π∈Sn

0 = 0

This proves the lemma.

Before considering the other case, when G has a perfect matching, first note the Schwartz-Zippel
lemma given as follows.

Lemma 4 (Schwartz-Zippel). Consider a non-zero polynomial P (Z1, . . . , Zm) ∈ R[Z1, . . . , Zm] of
degree d and some finite S ⊆ R with |S| = b. If z1, . . . , zm are independently chosen uniformly at
random from S, then we have

Pr[P (z1, . . . , zm) = 0] ≤ d

b
.

Proof. We prove this by induction on the number of variables. For m = 1, note that a nonzero
univariate polynomial of degree d has at most d zeroes.

Next, suppose that the lemma holds for all polynomials with at most m − 1 variables. Then,
consider P as a polynomial in Zm given as follows, where t ≤ d,

P (Z1, . . . , Zm) =
t∑

i=0

Zt
mPi(Z1, . . . , Zm−1).

Since P was nonzero, there must exist some nonzero Pi. Since there are only finitely many Pis,
define t to be the largest i such that Pi is nonzero. It then follows that deg(Pi) ≤ d − i, and in
particular, deg(Pt) ≤ d− t.

Choose z1, . . . , zm−1 uniformly at random, independently, from S. Using the induction hypothesis,
we have

Prz1,...,zm−1 [Pi(z1, . . . , zm−1) = 0] ≤ d− i

b
.

Thus, if we consider the probability that P (z1, . . . , zm−1, Zm) is the zero polynomial in R[Zm], we
get

Prz1,...,zm−1 [P (z1, . . . , zm−1, Zm) ≡ 0] =
t∏

i=1

Prz1,...,zm−1 [Pi(z1, . . . , zm−1) = 0]

≤ Prz1,...,zm−1 [Pt(z1, . . . , zm−1) = 0] ≤ d− t

b

3

Now, if Pt(z1, . . . , zm−1) ̸= 0, then P (z1, . . . , zm−1, Zm) was a nonzero univariate polynomial with
degree at most t. So, by choosing zm uniformly at random from S, we get

Przm [P (z1, . . . , zm−1, z) = 0|Pt(z1, . . . , zm−1) = 0] ≤ t

b

Thus, by combining the first probability expression and the above conditional probability, we get

Prz1,...,zm [P (z1, . . . , zm−1, z) = 0] ≤ d− t

b
+

t

b
=

d

b

This completes the induction.

Theorem 5. If G has a perfect matching, then Algorithm 1 declares “G has a perfect matching”
with probability at least 1− n

N .

Before proving this claim, note that 1− n
N → 1 as N grows larger.

Proof. Suppose G has a perfect matching. Using the same indexing for L and R from Algorithm
1, consider the formal n× n variable matrix C given by

Cij =

{
0, no edge from i ∈ L to j ∈ R

Xij , otherwise.
(1)

Then, det(C) is a polynomial of the form det(C) = P (Xij : ij ∈ E). Let |E| = m; then, we
can rewrite det(C) = P (Zi : i ∈ [m]) by identifying each Xij with some Zk. We now have a
formal polynomial in m variables, i.e. P (Z1, . . . , Am) ∈ R[Z1, . . . , Zm]. Note in particular that, by
definition of det(C), we get deg(P) ≤ n, as in any of the products of the form Ci,π(i), we can have
at most n random variables Xi,π(i).

Since G has a perfect matching, say M , there exists some π ∈ Sn corresponding to the perfect
matching such that

∏
i∈[n]Ci,π(i) ̸= 0. Further note that this implies that P is not the zero

polynomial. Indeed, this is because for any distinct π′ ∈ Sn, the monomial resulting from π′ is
different from that of π, and thus, cannot cancel each other as formal polynomials.

We can then apply Lemma 4 to conclude that Prz1,...,zm [P (z1, . . . , zm) = 0] ≤ n
N . Hence, the

probability that the determinant is nonzero is simply the complement of this value, and is thus, at
least 1− n

N .

By choosing N sufficiently large (taking N = 10n for example) we can get this success probability
closer to 1. More importantly, with even something as small as N > 2n, we can get a success
probability greater than 1

2 , which we can then use to repeat the algorithm sufficiently many times
to amplify the success probability arbitrarily close to 1.

As a remark, it is useful to consider why we even constructed such an algorithm for the matching
problem in bipartite graphs when we already had an algorithm from last week. For one, last week’s
algorithm was deterministic while Algorithm 1 is a randomized Monte Carlo algorithm which is
not guaranteed to succeed. The reason for this is that Algorithm 1 has some useful applications
to other problems. One such problem is the extension of the matching problem known as the k
blue-red matching problem, given as follows.

4

Problem 1.

Input: A bipartite graph G = (L ⊔ R,E) with |L| = |R| = n where every edge e ∈ E is either
coloured blue or red.

Output: Determine whether there exists a perfect matching of G with exactly k blue edges.

Exercise 6. Use a similar algorithm to Algorithm 1 to solve Problem 1.

2 Posets and Dilworth’s Theorem

A poset (a partially ordered set) is a set S with a relation ≤ satisfying

1. reflexivity: ∀a : a ≤ a

2. transitivity: ∀a, b, c : a ≤ b ∧ b ≤ c → a ≤ c

3. anti-symmetry: ∀a, b : a ≤ b ∧ b ≤ a → a = b.

If S also satisfies ∀a, b : a ≤ b ∨ b ≤ a, then it is totally ordered.

Some examples include (R,≤), (P(X),⊆), and (N \ {0}, |).

A subset C ⊆ S of a poset is called a chain if it is totally ordered. A subset A ⊆ S is called an
antichain if for any distinct elements a, b ∈ A, a ̸≤ b and b ̸≤ a. In this case, a and b are said to be
incomparable.

A simple fact is the following.

Fact 7. Let S be a poset. For any chain C ⊆ S and antichain A ⊆ S, |C ∩A| ≤ 1.

This is because any two elements of A must be incomparable whereas any two element of C must
be comparable.

This fact, together with the pigeonhole principle, gives the following observation.

Observation 8 (Dilworth’s Observation). If S = C1 ∪ . . . ∪ Ct, then, for any antichain A ⊆ S,
|A| ≤ t.

Proof. If there exists some antichain A with |A| > t, then by the pigeonhole principle, there exists
some chain Ci with |Ci ∩A| > 1, which would contradict Fact 7.

This should look familiar to the max-flow min-cut theorem from last week! Both are instances of
linear programming duality.

Given this observation, it makes sense to wonder if it is tight. It turns out that the minimum
number of chains required to cover a poset is exactly the size of the largest antichain.

Theorem 9 (Dilworth’s Theorem). Let S be a poset and A ⊆ S be a maximal antichain. Then,
there are chains C1, . . . , C|A| that union to S.

5

Proof. We prove this by induction on |S|. This is clearly true for |S| ≤ 1. Let |S| > 1.

Let M be the size of the largest antichain in S. Let C be a maximum chain in S (i.e cannot add
more elements to C to keep it a chain). Note that |C| > 0.

If every antichain in S \C has size ≤ M − 1, then the induction hypothesis says P \C is the union
of M − 1 chains. Together with C, this gives S as a union of M chains.

Otherwise, there exists an antichain A ⊆ S \ C of size M . Say A = {a1, . . . , aM}. Define

S≤ = {s ∈ S : s ≤ ai for some i},

and
S≥ = {s ∈ S : s ≥ ai for some i}.

Before we can apply the induction hypothesis to S≤ and S≥, we need to check a few things. First,
S≤ ∪ S≥ = S: if not, we can extend A to be a larger antichain, contradicting that the largest
antichain in S has size M . Also, |S≤| < |S|: the largest element in C is not in S≤ because C is
maximal. Similarly, |S≥| < |S|. The intersection S≤∩S≥ is just A: if x /∈ A and for some a, a′ ∈ A,
a ≤ x ≤ a′, then a ≤ a′, which is impossible as A is an antichain. Finally, A is an antichain of
largest cardinality in S≤ and S≥.

By induction, S≤ = C1 ∪ . . . ∪ CM and S≥ = C ′
1 ∪ . . . ∪ C ′

M where Ci and C ′
i are chains. For each

a ∈ A, there is exactly one Ci such that a ∈ Ci. This is because A ⊆ S≤ and each Ci can only
cover one of a ∈ A. Same can be said about C ′

i. Without loss of generality, assume ai ∈ Ci ∩C ′
i for

all i. Then, we can line up Ci and C ′
i to obtain a chain C ′′

i . This shows S is a union C ′′
1 ∪ . . .∪C ′′

M

of M chains. This completes the proof.

In some sources, the chains in Dilworth’s theorem are disjoint, but this is in fact equivalent: a poset
can be written as a union of k chains if and only if it is the union of k disjoint chains. To see why,
if a poset can be written as C1 ∪ . . . ∪ Ck, then for each 1 < i ≤ k, just remove the elements in Ci

that already appears in some Cj , j < i. This gives a decomposition into disjoint chains.

An application of Dilworth’s theorem is the following.

Consider the poset (P([n]),⊆). The set of all subsets of size ⌊n/2⌋ is an antichain of size
(

n
⌊n/2⌋

)
.

We claim this is an antichain of maximal size.

Exercise 10. Find
(

n
⌊n/2⌋

)
chains that union to P([n]). Hint: begin building each chain from a

subset of size
(

n
⌊n/2⌋

)
.

Alternatively, we have the following proof using the probabilistic method.

Theorem 11. Let A be an antichain in (P([n]),⊆). Then, |A| ≤
(

n
⌊n/2⌋

)
.

Proof. Let π ∈ Sn be a permutation and let EA,π be the event that {π(1), . . . , π(|A|)} = A for each
A ∈ A. It is clear that for a uniformly random permutation π, the first k elements {π(1), . . . , π(k)}

is a uniformly random k-element subset of [n]. Thus, Pr
π∈Sn uniform

[EA,π] =

(
n

|A|

)−1

. Moreover,

because A is an antichain, EA,π and EA′,π are disjoint for any distinct A,A′ ∈ A.

6

Applying the union bound and the fact that probabilities are at most 1, we get∑
A∈A

Pr
π∈Sn

[EA,π] ≤ 1. (2)

We know that
(

n
⌊n/2⌋

)
≥

(
n
k

)
for any k, so

∑
A∈A

Pr
π∈Sn

[EA,π] ≥
|A|(
n

⌊n/2⌋
) .

So |A| ≤
(

n
⌊n/2⌋

)
.

In the proof above, the inequality 2 is also known as the LYM inequality. More specifically,

Theorem 12. Let U be a set of size n and A ⊆ P(U) an antichain. Let Ak be the set of sets in A
of size k. Then,

n∑
k=0

|Ak|(
n
k

) ≤ 1.

Exercise 13. Prove the above theorem.

Finally, consider the following example of a poset in Fn
q , where Fq is a finite field of order q.

Example 14. Define the poset of linear subspaces of Fn
q with a partial order given by the inclusion

relation.

As a related question, what is the number of linear subspaces in Fn
q of dimension d? To answer

this, first consider the natural many-to-one map from the set of all d-dimensional subspaces with a
basis to the set of all d− dim subspaces.

The number of ways to pick a d-dimensional subspace with a basis is the same as the number of
ways to pick d linearly independent vectors, i.e.

∏
i∈[d](q

n − qi−1).

Next, the number of bases for any d-dimensional subspace is the same as the number of ways to
pick d linearly independent vectors in the d-dimensional space, i.e.

∏
i∈[d](q

d − qi−1).

Thus, the number of ways to pick a d-dimensional linear subspace in Fn
q is

∏
i∈[d]

qn − qi−1

qd − qi−1
.

7

