Lecture 11: Restricted Intersections of Sets

Combinatorial Methods (Winter 2023)
University of Toronto Swastik Kopparty
Scribes: Clement Yung

Fix some positive integers n, a, b. Consider familes of sets $\mathcal{Y} \subseteq\binom{[n]}{a}$ such that for all $u, v \in \mathcal{Y}$:

$$
|u \cap v| \leq b
$$

We are interested in finding out how big/small can the set \mathcal{Y} be, and in this lecture we present various approaches to this problem.

We write $a=\alpha n$ and $b=\beta n$ for some $\alpha, \beta \in[0,1]$.

1 Conditions on β for $|\mathcal{Y}|$ to be small

Theorem 1. If $\beta<2 \alpha-1$, then $|\mathcal{Y}| \leq 1$.

Proof. Suppose otherwise. If $u, v \in \mathcal{Y}$ are such that $u \neq y$, then:

$$
\beta n=b \geq|u \cap v|=|u|+|v|-|u \cup v| \geq 2 a-n=(2 \alpha-1) n
$$

a contradiction.
Conversely, if $\beta>\alpha$, then trivially \mathcal{Y} can be arbitrarily large (e.g. it is possible that $\mathcal{Y}=\binom{[n]}{a}$). The growth rate is exponential: By Stirling's approximation for n !, we have that:

$$
\binom{n}{\alpha n} \sim 2^{c_{\alpha} \cdot n} \cdot \operatorname{poly}(n)
$$

where $\operatorname{poly}(n)$ is some polynomial with variable n, and:

$$
c_{\alpha}=H(\alpha)=\alpha \log \frac{1}{\alpha}+(1-\alpha) \log \left(\frac{1}{1-\alpha}\right)
$$

2 Growth rates of $|\mathcal{Y}|$

We now consider the following questions:

1. For which α, β can $|\mathcal{Y}|$ be exponentially big?
2. For which α, β must $|\mathcal{Y}|$ be $\leq \operatorname{poly}(n)$?

2.1 Exponential growth rate

Fix some m, and write:

$$
\mathcal{Y}=\left\{u_{1}, u_{2}, \ldots, u_{m}\right\}
$$

where each u_{i} is picked independently and uniformly from $\binom{[n]}{a}$. Since each number in $[n]$ has a uniform probability of $\frac{1}{n}$ to be in any of the v_{i} 's, we "expect" the "typical intersection" size to be $\frac{a^{2}}{n}=\alpha^{2} \cdot n$. To see this: Instead of taking $u \in\binom{[n]}{a}$, we take each element of $[n]$ into u with probability $\frac{a}{n}$. Thus, for a specific $i \in[n]$ and two fixed sets in $\binom{[n]}{a}$, there is $\left(\frac{a}{n}\right)^{2}$ probability of i belonging in both sets. Since there are n many such i 's, the expected size of intersection is $n \cdot\left(\frac{a}{n}\right)^{2}$. This also tells us the following:

Theorem 2. If $\beta>\alpha^{2}$, then there exists exponentially large \mathcal{Y}.
Intuitively, this is because if we take a large family of random sets, then by the above reasoning most of the families should have intersection at most $\alpha^{2} n<b$, which satisfies the requirement $|u \cap v| \leq b$.

Proof. Pick b such that $a^{2}<p<b$. For each $i \in[m]$, where m is to be determined, let u_{i} be a set where each element is taken independently with probability p. Then:

$$
\mathbb{E}\left[\left|u_{i}\right|\right]=\mathbb{E}\left[\sum_{k=1}^{n} \mathbb{1}_{k \in u_{i}}\right]=\sum_{k=1}^{n} \mathbb{E}\left[\mathbb{1}_{k \in u_{i}}\right]=p n
$$

By Chernoff's bound, we have that for all i and $\varepsilon>0$:

$$
\operatorname{Pr}\left[\left|\left|u_{i}\right|-p n\right|>\varepsilon n\right] \leq e^{-\frac{\varepsilon^{2} n}{4}}
$$

Choose $\varepsilon:=p-\alpha$. Then:

$$
\operatorname{Pr}\left[\left|u_{i}\right|<\alpha n\right] \leq \operatorname{Pr}\left[| | u_{i}|-p n|>\varepsilon n\right] \leq e^{-\frac{\varepsilon^{2} n}{4}}
$$

Therefore:

$$
\operatorname{Pr}\left[\exists i \in[m] \text { such that }\left|u_{i}\right|<\alpha n\right]=\sum_{i=1}^{n} \operatorname{Pr}\left[\left|u_{i}\right|<\alpha n\right] \leq m e^{-\frac{\varepsilon^{2} n}{4}}
$$

Now fix $i, j \in[m]$ with $i \neq j$. Then:

$$
\left|v_{i} \cap v_{j}\right|=\mathbb{E}\left[\sum_{k=1}^{n} \mathbb{1}_{k \in u_{i}} \cdot \mathbb{1}_{k \in u_{j}}\right]=\sum_{k=1}^{n} \operatorname{Pr}\left[k \in u_{i} \wedge k \in u_{j}\right]=p^{2} n
$$

Let $X_{k}:=\mathbb{1}_{k \in u_{i}} \cdot \mathbb{1}_{k \in u_{j}}\left(\right.$ so $\left.\operatorname{Pr}\left[X_{k}=1\right]=p^{2}\right)$. Then, by Chernoff's bound again:

$$
\begin{equation*}
\operatorname{Pr}\left[\left|\sum X_{k}-p^{2} n\right|>\epsilon^{2} n\right] \leq e^{-\frac{\epsilon^{2} n}{4}} \tag{1}
\end{equation*}
$$

Choose $\epsilon=\beta-p^{2}$ here, and we have that:

$$
\operatorname{Pr}\left[\left|u_{i} \cap u_{j}\right|>\beta n\right] \leq e^{-\frac{\epsilon^{2} n}{4}}
$$

Therefore:

$$
\begin{equation*}
\operatorname{Pr}\left[\exists i, j \in[m], i \neq j \text { such that }\left|u_{i} \cap u_{j}\right|>\beta n\right] \leq\binom{ m}{2} e^{-\frac{\epsilon^{2} n}{4}} \tag{2}
\end{equation*}
$$

Thus, if m is chosen such that $m e^{-\frac{\varepsilon^{2} n}{4}}<1$ (inequality (1)) and $\binom{m}{2} e^{-\frac{\epsilon^{2} n}{4}}<1$ (inequality (2)), then with positive probability we obtain a family with size of intersections at most $\beta n=b$.

2.2 Polynomial growth rate

Theorem 3. If $\beta<\alpha^{2}$, then $|\mathcal{Y}| \leq n+1$.

Proof. We consider each u_{i} as a vector $u_{i} \in\{0,1\}^{n} \subseteq \mathbb{R}^{n}$, such that for all $i \neq j$:

$$
\left\langle u_{i}, u_{i}\right\rangle=\alpha n,\left\langle u_{i}, u_{j}\right\rangle \leq \beta n
$$

Write $\mathcal{Y}=\left\{u_{1}, \ldots, u_{m}\right\}$.
Lemma 4. If $\tilde{u}_{i}, \ldots, \tilde{u}_{m} \in \mathbb{R}^{n} \backslash\{0\}$ are such that $\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle<0$ for all $i \neq j$, then $m \leq n+1$.
Proof. We induct on n. Assume WLOG that \tilde{u}_{i} are all unit vectors, and by rotating the space if necessary we also assume that $\tilde{u}_{1}=e_{1}$. Then write out the vectors as follow:

$$
\begin{aligned}
\tilde{u}_{1} & =\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right] \\
\tilde{u}_{2} & =\left[\begin{array}{lll}
c_{2} & -\vec{r}_{2}
\end{array}\right] \\
\tilde{u}_{3} & =\left[\begin{array}{lll}
c_{3} & -\vec{r}_{3}
\end{array}\right] \\
& \vdots \\
\tilde{u}_{m} & =\left[\begin{array}{lll}
c_{m} & -\vec{r}_{m}-
\end{array}\right]
\end{aligned}
$$

We have that $c_{2}, \ldots, c_{m}<0$, and $\vec{r}_{2}, \ldots, \vec{r}_{m} \in \mathbb{R}^{n-1}$. This implies that $\left\langle\vec{r}_{i}, \vec{r}_{j}\right\rangle<0$ for all $i \neq j$. By induction hypothesis, we have that $m-1 \leq n$, so $m \leq n+1$.

We now prove the theorem. Take $w=\gamma \cdot \overrightarrow{1} \in \mathbb{R}^{n}$ (where $\overrightarrow{1}=(1, \ldots, 1)$), where γ is to be determined. Let $\tilde{u}_{i}:=u_{i}-w$. Then for $i \neq j$:

$$
\begin{aligned}
\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle & =\left\langle u_{i}-w, u_{j}-w\right\rangle \\
& =\left\langle u_{i}, u_{j}\right\rangle-\left\langle u_{i}, w\right\rangle-\left\langle u_{j}, w\right\rangle+\langle w, w\rangle \\
& \leq \beta n-\gamma \alpha n-\gamma \alpha n+n \gamma^{2} \\
& =\gamma^{2}-2 \alpha n \gamma+\beta n \\
& =n\left[(\gamma-\alpha)^{2}+\left(\beta-\alpha^{2}\right)\right]
\end{aligned}
$$

Choose $\gamma=\alpha$, and we have that $\left\langle\tilde{u}_{i}, \tilde{u}_{j}\right\rangle \leq n\left(\beta-\alpha^{2}\right)<0$. By the Lemma above, we have that $m \leq n+1$, as desired.

In summary, we have the following:

1. If $\beta<\alpha$, then the family can be arbitrarily large.
2. If $\alpha^{2}<\beta<\alpha$, then by Theorem 2 the family can be exponentially large.
3. If $2 \alpha-1<\beta<\alpha$, then by Theorem 3 the family can be polynomially large.
4. If $\beta<\alpha$, then by Theorem 1 the family has at most one set.

3 Bounding $|\mathcal{Y}|$ with using bipartite graphs

Again, let $\mathcal{Y}=\left\{u_{1}, \ldots, u_{m}\right\} \subseteq\binom{[n]}{a}$. Consider a bipartite graph $G=(\mathcal{Y} \sqcup[n], E)$, such that for each i and $k,\left(u_{i}, k\right) \in E$ iff $k \in u_{i}$. The assertion that $\left|u_{i} \cap u_{j}\right| \leq \beta n$ for all $i \neq j$ is equivalent to saying that the graph G does not contain $K_{2, \beta n+1}$ as an induced subgraph. How can we use this property to bound m ?

We start by counting the number of subgraphs of the shape " $>$ ". That is, an induced subgraph with vertices $\left\{u_{i}, k, u_{j}\right\}$ for some $u_{i}, u_{j} \in \mathcal{Y}$ and $k \in[n]$. We first note that:

$$
\#(">") \leq\binom{ m}{2} \cdot \beta n=\frac{m(m-1) \beta n}{2}
$$

as there are $\binom{m}{2}$ many pairs in \mathcal{Y}, and each pair has at most βn many elements in their intersection. On the other hand:

$$
\#(">")=\sum_{k \in[n]}\binom{\operatorname{deg}(k)}{2} \geq \sum_{k \in[n]}\binom{\overline{\operatorname{deg}}}{2}=n \cdot\binom{\alpha m}{2}=\frac{n(\alpha m)(\alpha m-1)}{2}
$$

where $\overline{\operatorname{deg}}$ is the average degrees of nodes on the right. Combining both inequalities, we have that:

$$
\begin{aligned}
\frac{n(\alpha m)(\alpha m-1)}{2} \leq \frac{m(m-1) \beta n}{2} & \Longrightarrow m\left(\alpha^{2}-\beta\right) \leq \alpha-\beta \\
& \Longrightarrow m \leq \frac{\alpha-\beta}{\alpha^{2}-\beta}
\end{aligned}
$$

