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Fix some positive integers n, a, b. Consider familes of sets Y ⊆
(
[n]
a

)
such that for all u, v ∈ Y:

|u ∩ v| ≤ b

We are interested in finding out how big/small can the set Y be, and in this lecture we present
various approaches to this problem.

We write a = αn and b = βn for some α, β ∈ [0, 1].

1 Conditions on β for |Y| to be small

Theorem 1. If β < 2α− 1, then |Y| ≤ 1.

Proof. Suppose otherwise. If u, v ∈ Y are such that u ̸= y, then:

βn = b ≥ |u ∩ v| = |u|+ |v| − |u ∪ v| ≥ 2a− n = (2α− 1)n

a contradiction.

Conversely, if β > α, then trivially Y can be arbitrarily large (e.g. it is possible that Y =
(
[n]
a

)
).

The growth rate is exponential: By Stirling’s approximation for n!, we have that:(
n

αn

)
∼ 2cα·n · poly(n)

where poly(n) is some polynomial with variable n, and:

cα = H(α) = α log
1

α
+ (1− α) log

(
1

1− α

)

2 Growth rates of |Y|

We now consider the following questions:

1. For which α, β can |Y| be exponentially big?

2. For which α, β must |Y| be ≤ poly(n)?
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2.1 Exponential growth rate

Fix some m, and write:

Y = {u1, u2, . . . , um}

where each ui is picked independently and uniformly from
(
[n]
a

)
. Since each number in [n] has a

uniform probability of 1
n to be in any of the vi’s, we “expect” the “typical intersection” size to

be a2

n = α2 · n. To see this: Instead of taking u ∈
(
[n]
a

)
, we take each element of [n] into u with

probability a
n . Thus, for a specific i ∈ [n] and two fixed sets in

(
[n]
a

)
, there is

(
a
n

)2
probability of i

belonging in both sets. Since there are n many such i’s, the expected size of intersection is n ·
(
a
n

)2
.

This also tells us the following:

Theorem 2. If β > α2, then there exists exponentially large Y.

Intuitively, this is because if we take a large family of random sets, then by the above reasoning
most of the families should have intersection at most α2n < b, which satisfies the requirement
|u ∩ v| ≤ b.

Proof. Pick b such that a2 < p < b. For each i ∈ [m], where m is to be determined, let ui be a set
where each element is taken independently with probability p. Then:

E[|ui|] = E

[
n∑

k=1

1k∈ui

]
=

n∑
k=1

E[1k∈ui
] = pn

By Chernoff’s bound, we have that for all i and ε > 0:

Pr[||ui| − pn| > εn] ≤ e−
ε2n
4

Choose ε := p− α. Then:

Pr[|ui| < αn] ≤ Pr[||ui| − pn| > εn] ≤ e−
ε2n
4

Therefore:

Pr[∃i ∈ [m] such that |ui| < αn] =

n∑
i=1

Pr[|ui| < αn] ≤ me−
ε2n
4

Now fix i, j ∈ [m] with i ̸= j. Then:

|vi ∩ vj | = E

[
n∑

k=1

1k∈ui
· 1k∈uj

]
=

n∑
k=1

Pr[k ∈ ui ∧ k ∈ uj ] = p2n

Let Xk := 1k∈ui
· 1k∈uj

(so Pr[Xk = 1] = p2). Then, by Chernoff’s bound again:

Pr
[∣∣∣∑Xk − p2n

∣∣∣ > ϵ2n
]
≤ e−

ϵ2n
4 (1)
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Choose ϵ = β − p2 here, and we have that:

Pr[|ui ∩ uj | > βn] ≤ e−
ϵ2n
4

Therefore:

Pr[∃i, j ∈ [m], i ̸= j such that |ui ∩ uj | > βn] ≤
(
m

2

)
e−

ϵ2n
4 (2)

Thus, if m is chosen such that me−
ε2n
4 < 1 (inequality (1)) and

(
m
2

)
e−

ϵ2n
4 < 1 (inequality (2)), then

with positive probability we obtain a family with size of intersections at most βn = b.

2.2 Polynomial growth rate

Theorem 3. If β < α2, then |Y| ≤ n+ 1.

Proof. We consider each ui as a vector ui ∈ {0, 1}n ⊆ Rn, such that for all i ̸= j:

⟨ui, ui⟩ = αn, ⟨ui, uj⟩ ≤ βn

Write Y = {u1, . . . , um}.

Lemma 4. If ũi, . . . , ũm ∈ Rn \ {0} are such that ⟨ũi, ũj⟩ < 0 for all i ̸= j, then m ≤ n+ 1.

Proof. We induct on n. Assume WLOG that ũi are all unit vectors, and by rotating the space if
necessary we also assume that ũ1 = e1. Then write out the vectors as follow:

ũ1 =
[
1 0 · · · 0

]
ũ2 =

[
c2 — r⃗2 —

]
ũ3 =

[
c3 — r⃗3 —

]
...

ũm =
[
cm — r⃗m —

]
We have that c2, . . . , cm < 0, and r⃗2, . . . , r⃗m ∈ Rn−1. This implies that ⟨r⃗i, r⃗j⟩ < 0 for all i ̸= j. By
induction hypothesis, we have that m− 1 ≤ n, so m ≤ n+ 1. ■

We now prove the theorem. Take w = γ ·1⃗ ∈ Rn (where 1⃗ = (1, . . . , 1)), where γ is to be determined.
Let ũi := ui − w. Then for i ̸= j:

⟨ũi, ũj⟩ = ⟨ui − w, uj − w⟩
= ⟨ui, uj⟩ − ⟨ui, w⟩ − ⟨uj , w⟩+ ⟨w,w⟩
≤ βn− γαn− γαn+ nγ2

= γ2 − 2αnγ + βn

= n
[
(γ − α)2 + (β − α2)

]
3



Choose γ = α, and we have that ⟨ũi, ũj⟩ ≤ n(β − α2) < 0. By the Lemma above, we have that
m ≤ n+ 1, as desired.

In summary, we have the following:

1. If β < α, then the family can be arbitrarily large.

2. If α2 < β < α, then by Theorem 2 the family can be exponentially large.

3. If 2α− 1 < β < α, then by Theorem 3 the family can be polynomially large.

4. If β < α, then by Theorem 1 the family has at most one set.

3 Bounding |Y| with using bipartite graphs

Again, let Y = {u1, . . . , um} ⊆
(
[n]
a

)
. Consider a bipartite graph G = (Y ⊔ [n], E), such that for

each i and k, (ui, k) ∈ E iff k ∈ ui. The assertion that |ui ∩ uj | ≤ βn for all i ̸= j is equivalent to
saying that the graph G does not contain K2,βn+1 as an induced subgraph. How can we use this
property to bound m?

We start by counting the number of subgraphs of the shape “>”. That is, an induced subgraph
with vertices {ui, k, uj} for some ui, uj ∈ Y and k ∈ [n]. We first note that:

# (“>”) ≤
(
m

2

)
· βn =

m(m− 1)βn

2

as there are
(
m
2

)
many pairs in Y, and each pair has at most βn many elements in their intersection.

On the other hand:

# (“>”) =
∑
k∈[n]

(
deg(k)

2

)
≥

∑
k∈[n]

(
deg

2

)
= n ·

(
αm

2

)
=

n(αm)(αm− 1)

2
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where deg is the average degrees of nodes on the right. Combining both inequalities, we have that:

n(αm)(αm− 1)

2
≤ m(m− 1)βn

2
=⇒ m(α2 − β) ≤ α− β

=⇒ m ≤ α− β

α2 − β

5


