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1 Projective Plane

Let p be prime, consider FZ. Recall:

y=mx+h

Point of infinity: if two lines are parallel, they intersect at a ”point of infinity”.

Example 1. F2\{0}/scaling: ({1,1,2}={2,2,4})

Also: H{(:z;,yﬂ) cx,y € FpbU{(2,1,0) iz € Fp} U (1,0,0)” = HIFZQ,H + HFPH +1=p*+p+1

(a,b,c) represents line ax + by + ¢ = 0.
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Ff’,\{O}/scalingH = pil =p? +p+ 1. Note: the p+ 1 points are extra points at infinity.
D

Given a line (a, b, ¢), how many points are on the line? That is,
how many (z,y,z) € F3\{0}/scaling s.t. ax + by + cz = 07

p points from Fi, 1 point from F,, 0 or 1 point from (1,0,0).

Note: without scaling, p? points satisfy ((a,b,c), (z,y, z)) = 0 (the orthogonal plane).
Observation 2. Every line has p + 1 points; every point on p + 1 lines (of slopes 0,1,...,00);
in total there are p*> + p + 1 points and p> + p + 1 lines.

Fano plane: the smallest finite projective plane
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2 Oddtown

A town has n people. The people form clubs (sets of people). The size of each club is odd. In any 2 clubs,
the size of the intersection is even. What is the maximum number of clubs you can form?

Observation 3. the clubs must be an anti-chain (otherwise there is odd intersection);
Lower bound: {{i}:i € [n]}.
Consider a projective plane with p odd, the lines are sets of size p + 1 (even), intersections has size 1 (odd)

points ~ people, lines ~ clubs, so there can be n clubs.

Claim 4. The number of clubs is at most n.

Proof. For each club ¢;:
0 if person j not in club ¢;

create vector v; € Fy s.t. v;; = ) o
1 if person j is in club ¢;

Note that (v;,v;) =0 mod 2 if ¢ # j; (v;,v;) = 1 mod 2. (an ”orthonormal basis” of size n).
Then, let M = [v; vg ... vy]. M is an n x m matrix, and M T M = I;.

We know rank(AB) < max(rank(A),rank(B)), so m cannot be greater than n.

Question: what if the club size must be even?
Consider: 1 and 2 always join clubs together, so as 3 and 4, ..., 2k + 1,2k + 2.

Then, we can construct 2*/2 clubs.

Let V ={v; : i € [m]}. For all v,w € V, (v,w) = 0.
Let V+ = {w: (v,w) = 0,vv € V}. Then, dim(V+) =n — dim(V).
Also, V C V4, so dim(V) < dim(V+) =n — dim(V). So dim(V) < n/2.

Note: in this case, M T M has all zeros on the diagonal, so the rank is n — 1.

Summary:

size intersection maximum club number

odd even n
even even on/2
even odd norn+1
odd odd ~ 2n/2



3 Fisher’s Inequality

Proposition 5. Ay, ..., A, C [n] are non-empty. [A;NA;| = X foralli # j, (X € [n]). Then, m < f(n) =n.

Proof. Let vy, ..., v, be indicator vectors of A; € F"/2™.

Then, (v;,v;) = A for ¢ # j.

Let M = [v1 ... vy]. M is an n x m matrix, and M T M is an m x m matrix with A in all entries off the
diagonal.

At most 1 set A} has size .

If so, A # 0, all other sets must contain it and are disjoint after taking away A}.
So there are < n — A other sets.

The total number of sets is < (n — A) + 1 < n.

Case 2: all sets have size > A.

>\ A . A
Note: matrix A = A > h - [A] has full rank.
: o> A A
A A > A

So the rank of the first matrix above is > m — 1, so m < n + 1.

For z e R™, if © #£ 0,

$TASC: E JS'Z‘AZ‘j’I'j

i
= Z(ai —Nz? + Z AT

,J
2
= Z(al — )\)x? + A (Z .Z‘z> > 0.

So A has full rank.



4 2-Distance Sets

Let A be the Euclidean Distance
Let S C R such that Ja, b such that Va,y € S with « £y
A(z,y) € {a,b}

Example

S = {z € {0,1}" with exactly two ones}
Then |S| = O(n?)

We claim that this is the best we can do.
To show this we first define a polynomial P(x1, ..., Zn,y1,...yn) in the following way
P, )= (17 - VI*-a)(|7 -7 -b)
Then if we take x, y € §
0 ifz#y
P(z,y) = { .
ab ifxr=y

Now for each x € S consider the polynomial
Q+(y1, .-, yn) € Rly1, ..., yn] such that
Qu(y) = P(z,y)

Claim 6. There exists some linear space V of dimension O(n?) such that Q, € V for all x € S

Claim 7. {Q, : x} are linearly independent

Proof of claim 3.
Qa(y) = (||lz — yH2 —a)(|lz - yl[* — b)

= (i —v:)? —a) (3, (x5 —y;)> — b)

=y )(Z Y3 =20 22y (305 957 =20 2255 (30, v+ 00, 5 (22iy) (225y5)+ (305 v52)aH (32, wi®)o—
i (2ziy)b — Z (255]%)

Therefore Q. (y) € Span({(>=,; v:*) (X2, 4;°)} U{wi(X2, 45°) i € ]} U{ways = 4,5 € [0} U {295} U {yi :
€ [nJfufl})

Spanned by n? + O(n) functions O
Proof of claim 4.

Suppose Y AzQy =0

Take any 2’ € S and sub it into > A;Q

2e AaQu(2') =0

But all of the terms a Q,(z') = 0 except the case where x = 2’ in that case @y (z') = ab

Therefore 0 = )" A Qu(2") = A\prab

So Ay =0

But this was for any 2’ € S so the @, are linearly independent O



5 Complete Bipartite Graph

We colour the edge (x,y) Red if (x,y) = 1 and Blue if (x,y) =0
Claim 8. This graph has no monochromatic Ko /m) o(/m)
Proof of claim.

Case 1: Monochromatic Blue Ko m) o(/m)

For any S C L and T' C R with |S| = /n and |T| = /n
Suppose (z,y) =0Vx € Sandy e T

Then span(S) L span(T)
Therefore dim(span(S)) 4+ dim(span(T)) < k

|span(S)| < 2% = /n or
|span(T)| < 2% =

B

Case 2: Monochromatic Red Ko (/m) o(/n)

For any S C L and T' C R with |S| > /n and |T| > /n
Suppose (z,y) =1Vz € S,y € T

Then consider (1,z), (1,y) € F4T!

These are orthogonal sets again so either

|S] or |T| < V2k+1 < 24/n



