Combinatorial Methods (Winter 2023) University of Toronto Swastik Kopparty Scribes: Yuxi Wang and William Groff

1 Projective Plane

Let p be prime, consider \mathbb{F}_p^2 . Recall:

Point of infinity: if two lines are parallel, they intersect at a "point of infinity". **Example 1.** $\mathbb{F}_p^3 \setminus \{0\} / scaling: (\{1, 1, 2\} = \{2, 2, 4\})$

 $\left\|\mathbb{F}_{p}^{3}\setminus\{0\}/scaling\right\| = \frac{p^{3}-1}{p-1} = p^{2}+p+1$. Note: the p+1 points are extra points at infinity.

 $\begin{array}{l} Also: \ \left\| \{(x,y,1): x, y \in \mathbb{F}_p\} \cup \{(x,1,0): x \in \mathbb{F}_p\} \cup (1,0,0) \right\| = \left\| \mathbb{F}_p^2 \right\| + \left\| \mathbb{F}_p \right\| + 1 = p^2 + p + 1. \\ (a,b,c) \ represents \ line \ ax + by + c = 0. \end{array}$

Given a line (a, b, c), how many points are on the line? That is, how many $(x, y, z) \in \mathbb{F}_p^3 \setminus \{0\}$ /scaling s.t. ax + by + cz = 0?

p points from \mathbb{F}_p^2 , 1 point from \mathbb{F}_p , 0 or 1 point from (1,0,0).

Note: without scaling, p^2 points satisfy $\langle (a, b, c), (x, y, z) \rangle = 0$ (the orthogonal plane).

Observation 2. Every line has p + 1 points; every point on p + 1 lines (of slopes $0, 1, ..., \infty$); in total there are $p^2 + p + 1$ points and $p^2 + p + 1$ lines.

Fano plane: the smallest finite projective plane

2 Oddtown

A town has n people. The people form clubs (sets of people). The size of each club is odd. In any 2 clubs, the size of the intersection is even. What is the maximum number of clubs you can form?

Observation 3. the clubs must be an anti-chain (otherwise there is odd intersection); Lower bound: $\{\{i\}: i \in [n]\}$.

Consider a projective plane with p odd, the lines are sets of size p + 1 (even), intersections has size 1 (odd) points ~ people, lines ~ clubs, so there can be n clubs.

Claim 4. The number of clubs is at most n.

Proof. For each club c_i :

create vector $v_i \in \mathbb{F}_2^n$ s.t. $v_{ij} = \begin{cases} 0 & \text{if person j not in club } c_i \\ 1 & \text{if person j is in club } c_i \end{cases}$

Note that $\langle v_i, v_j \rangle = 0 \mod 2$ if $i \neq j$; $\langle v_i, v_i \rangle = 1 \mod 2$. (an "orthonormal basis" of size n).

Then, let $M = [v_1 \ v_2 \ \dots \ v_m]$. *M* is an $n \times m$ matrix, and $M^{\top}M = I_M$.

We know $rank(AB) \leq max(rank(A), rank(B))$, so m cannot be greater than n.

Question: what if the club size must be even?

Consider: 1 and 2 always join clubs together, so as 3 and 4, ..., 2k + 1, 2k + 2. Then, we can construct $2^{n/2}$ clubs.

Let $V = \{v_i : i \in [m]\}$. For all $v, w \in V$, $\langle v, w \rangle = 0$. Let $V^{\perp} = \{w : \langle v, w \rangle = 0, vv \in V\}$. Then, $dim(V^{\perp}) = n - dim(V)$. Also, $V \subseteq V^{\perp}$, so $dim(V) \leq dim(V^{\perp}) = n - dim(V)$. So $dim(V) \leq n/2$. Note: in this case, $M^{\top}M$ has all zeros on the diagonal, so the rank is n - 1.

Summary:

size	intersection	maximum club number
odd	even	n
even	even	$2^{n/2}$
even	odd	n or n+1
odd	odd	$\approx 2^{n/2}$

3 Fisher's Inequality

Proposition 5. $A_1, \ldots, A_m \subseteq [n]$ are non-empty. $|A_i \cap A_j| = \lambda$ for all $i \neq j$, $(\lambda \in [n])$. Then, $m \leq f(n) = n$.

Proof. Let v_1, \ldots, v_m be indicator vectors of $A_i \in \mathbb{F}^n/2^n$. Then, $\langle v_i, v_j \rangle = \lambda$ for $i \neq j$.

Let $M = [v_1 \ldots v_m]$. *M* is an $n \times m$ matrix, and $M^{\top}M$ is an $m \times m$ matrix with λ in all entries off the diagonal.

At most 1 set A_i^* has size λ . If so, $\lambda \neq 0$, all other sets must contain it and are disjoint after taking away A_i^* . So there are $\leq n - \lambda$ other sets. The total number of sets is $\leq (n - \lambda) + 1 \leq n$.

Case 2: all sets have size $> \lambda$.

Note: matrix
$$A = \begin{bmatrix} > \lambda & \lambda & \dots & \lambda \\ \lambda & > \lambda & \ddots & \vdots \\ \vdots & \ddots & > \lambda & \lambda \\ \lambda & \dots & \lambda & > \lambda \end{bmatrix} - [\lambda]$$
 has full rank.

So the rank of the first matrix above is $\geq m - 1$, so $m \leq n + 1$. For $x \in \mathbb{R}^m$, if $x \neq 0$,

$$x^{\top}Ax = \sum_{i,j} x_i A_{ij} x_j$$

= $\sum_i (a_i - \lambda) x_i^2 + \sum_{i,j} \lambda x_i x_j$
= $\sum_i (a_i - \lambda) x_i^2 + \lambda \left(\sum_i x_i\right)^2 > 0.$

So A has full rank.

4 2-Distance Sets

Let Δ be the Euclidean Distance

Let $S \subset R$ such that $\exists a, b$ such that $\forall x, y \in S$ with $x \neq y$

 $\Delta(x,y) \in \{a,b\}$

Example

 $S = \{x \in \{0,1\}^n \text{ with exactly two ones} \}$ Then $|S| = \mathcal{O}(n^2)$

We claim that this is the best we can do.

To show this we first define a polynomial $P(x_1, ..., x_n, y_1, ..., y_n)$ in the following way

$$P(\overrightarrow{x}, \overrightarrow{y}) = (||\overrightarrow{x} - \overrightarrow{y}||^2 - a)(||\overrightarrow{x} - \overrightarrow{y}||^2 - b)$$

Then if we take $x, y \in S$

$$P(x,y) = \begin{cases} 0 & \text{if } x \neq y \\ ab & \text{if } x = y \end{cases}$$

Now for each $x \in S$ consider the polynomial $Q_x(y_1, ..., y_n) \in \mathbb{R}[y_1, ..., y_n]$ such that $Q_x(y) = P(x, y)$

Claim 6. There exists some linear space V of dimension $\mathcal{O}(n^2)$ such that $Q_x \in V$ for all $x \in S$

Claim 7. $\{Q_x : x\}$ are linearly independent

$$\begin{array}{l} Proof \ of \ claim \ 3. \\ Q_x(y) &= (||x-y||^2 - a)(||x-y||^2 - b) \\ &= (\sum_i (x_i - y_i)^2 - a)(\sum_j (x_j - y_j)^2 - b) \\ &= (\sum_i y_i^2)(\sum_j y_j^2) - \sum_i 2x_i y_i(\sum_j y_j^2) - \sum_j 2x_j y_j(\sum_i y_i^2) + \sum_{i,j} (2x_i y_i)(2x_j y_j) + (\sum_j y_j^2) a + (\sum_i y_i^2) b - \sum_i (2x_i y_i) b - \sum_j (2x_j y_j) a \end{array}$$

Therefore $Q_x(y) \in \text{Span}(\{(\sum_i y_i^2)(\sum_j y_j^2)\} \cup \{y_i(\sum_j y_j^2) : i \in [n]\} \cup \{y_i y_j : i, j \in [n]\} \cup \{\sum_j y_j^2\} \cup \{y_i : i \in [n]\} \cup \{1\})$

Spanned by $n^2 + \mathcal{O}(n)$ functions

Proof of claim 4. Suppose $\sum_x \lambda_x Q_x = 0$

Take any $x' \in S$ and sub it into $\sum_x \lambda_x Q_x$

$$\sum_{x} \lambda_x Q_x(x') = 0$$

But all of the terms a $Q_x(x') = 0$ except the case where x = x' in that case $Q_{x'}(x') = ab$

Therefore $0 = \sum_{x} \lambda_x Q_x(x') = \lambda_{x'} a b$

So
$$\lambda_{x'} = 0$$

But this was for any $x' \in S$ so the Q_x are linearly independent

5 Complete Bipartite Graph

We colour the edge (x,y) Red if $\langle x, y \rangle = 1$ and Blue if $\langle x, y \rangle = 0$

Claim 8. This graph has no monochromatic $K_{\mathcal{O}(\sqrt{n}),\mathcal{O}(\sqrt{n})}$

Proof of claim. **Case 1**: Monochromatic Blue $K_{\mathcal{O}(\sqrt{n}),\mathcal{O}(\sqrt{n})}$ For any $S \subset L$ and $T \subset R$ with $|S| = \sqrt{n}$ and $|T| = \sqrt{n}$ Suppose $\langle x, y \rangle = 0 \ \forall x \in S$ and $y \in T$ Then span(S) \perp span(T) Therefore dim(span(S)) + dim(span(T)) $\leq k$ $|span(S)| \leq 2^{\frac{k}{2}} = \sqrt{n}$ or $|span(T)| \leq 2^{\frac{k}{2}} = \sqrt{n}$ **Case 2**: Monochromatic Red $K_{\mathcal{O}(\sqrt{n}),\mathcal{O}(\sqrt{n})}$ For any $S \subset L$ and $T \subset R$ with $|S| > \sqrt{n}$ and $|T| > \sqrt{n}$ Suppose $\langle x, y \rangle = 1 \forall x \in S, y \in T$ Then consider $(1, x), (1, y) \in \mathbb{F}_2^{k+1}$ These are orthogonal sets again so either |S| or $|T| \leq \sqrt{2^{k+1}} \leq 2\sqrt{n}$