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1 Projective Plane

Let p be prime, consider F2
p. Recall:

Point of infinity: if two lines are parallel, they intersect at a ”point of infinity”.

Example 1. F3
p\{0}/scaling: ({1,1,2}={2,2,4})∥∥∥F3

p\{0}/scaling
∥∥∥ =

p3 − 1

p− 1
= p2 + p+ 1. Note: the p+ 1 points are extra points at infinity.

Also:
∥∥∥{(x, y, 1) : x, y ∈ Fp} ∪ {(x, 1, 0) : x ∈ Fp} ∪ (1, 0, 0)

∥∥∥ =
∥∥∥F2

p

∥∥∥+ ∥∥∥Fp

∥∥∥+ 1 = p2 + p+ 1.

(a, b, c) represents line ax+ by + c = 0.

Given a line (a, b, c), how many points are on the line? That is,
how many (x, y, z) ∈ F3

p\{0}/scaling s.t. ax+ by + cz = 0?

p points from F2
p, 1 point from Fp, 0 or 1 point from (1, 0, 0).

Note: without scaling, p2 points satisfy ⟨(a, b, c), (x, y, z)⟩ = 0 (the orthogonal plane).

Observation 2. Every line has p+ 1 points; every point on p+ 1 lines (of slopes 0, 1, . . . ,∞);
in total there are p2 + p+ 1 points and p2 + p+ 1 lines.

Fano plane: the smallest finite projective plane
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2 Oddtown

A town has n people. The people form clubs (sets of people). The size of each club is odd. In any 2 clubs,
the size of the intersection is even. What is the maximum number of clubs you can form?

Observation 3. the clubs must be an anti-chain (otherwise there is odd intersection);
Lower bound:

{
{i} : i ∈ [n]

}
.

Consider a projective plane with p odd, the lines are sets of size p+ 1 (even), intersections has size 1 (odd)
points ∼ people, lines ∼ clubs, so there can be n clubs.

Claim 4. The number of clubs is at most n.

Proof. For each club ci:

create vector vi ∈ Fn
2 s.t. vij =

{
0 if person j not in club ci

1 if person j is in club ci

Note that ⟨vi, vj⟩ = 0 mod 2 if i ̸= j; ⟨vi, vi⟩ = 1 mod 2. (an ”orthonormal basis” of size n).

Then, let M = [v1 v2 . . . vm]. M is an n×m matrix, and M⊤M = IM .

We know rank(AB) ≤ max(rank(A), rank(B)), so m cannot be greater than n.

Question: what if the club size must be even?

Consider: 1 and 2 always join clubs together, so as 3 and 4, . . . , 2k + 1, 2k + 2.

Then, we can construct 2n/2 clubs.

Let V = {vi : i ∈ [m]}. For all v, w ∈ V , ⟨v, w⟩ = 0.

Let V ⊥ = {w : ⟨v, w⟩ = 0, vv ∈ V }. Then, dim(V ⊥) = n− dim(V ).

Also, V ⊆ V ⊥, so dim(V ) ≤ dim(V ⊥) = n− dim(V ). So dim(V ) ≤ n/2.

Note: in this case, M⊤M has all zeros on the diagonal, so the rank is n− 1.

Summary:

size intersection maximum club number
odd even n
even even 2n/2

even odd n or n+ 1
odd odd ≈ 2n/2
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3 Fisher’s Inequality

Proposition 5. A1, . . . , Am ⊆ [n] are non-empty. |Ai∩Aj | = λ for all i ̸= j, (λ ∈ [n]). Then, m ≤ f(n) = n.

Proof. Let v1, . . . , vm be indicator vectors of Ai ∈ Fn/2n.
Then, ⟨vi, vj⟩ = λ for i ̸= j.

Let M = [v1 . . . vm]. M is an n ×m matrix, and M⊤M is an m ×m matrix with λ in all entries off the
diagonal.

At most 1 set A∗
i has size λ.

If so, λ ̸= 0, all other sets must contain it and are disjoint after taking away A∗
i .

So there are ≤ n− λ other sets.
The total number of sets is ≤ (n− λ) + 1 ≤ n.

Case 2: all sets have size > λ.

Note: matrix A =


> λ λ . . . λ

λ > λ
. . .

...
...

. . . > λ λ
λ . . . λ > λ

− [λ] has full rank.

So the rank of the first matrix above is ≥ m− 1, so m ≤ n+ 1.

For x ∈ Rm, if x ̸= 0,

x⊤Ax =
∑
i,j

xiAijxj

=
∑
i

(ai − λ)x2
i +

∑
i,j

λxixj

=
∑
i

(ai − λ)x2
i + λ

(∑
i

xi

)2

> 0.

So A has full rank.
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4 2-Distance Sets

Let ∆ be the Euclidean Distance

Let S ⊂ R such that ∃a, b such that ∀x, y ∈ S with x ̸= y

∆(x, y) ∈ {a, b}

Example

S = {x ∈ {0, 1}n with exactly two ones}
Then |S| = O(n2)

We claim that this is the best we can do.

To show this we first define a polynomial P (x1, ..., xn, y1, ...yn) in the following way

P (−→x ,−→y ) = (||−→x −−→y ||2 − a)(||−→x −−→y ||2 − b)

Then if we take x, y ∈ S

P (x, y) =

{
0 if x ̸= y

ab if x = y

Now for each x ∈ S consider the polynomial
Qx(y1, ..., yn) ∈ R[y1, ..., yn] such that
Qx(y) = P (x, y)

Claim 6. There exists some linear space V of dimension O(n2) such that Qx ∈ V for all x ∈ S

Claim 7. {Qx : x} are linearly independent

Proof of claim 3.
Qx(y) = (||x− y||2 − a)(||x− y||2 − b)

= (
∑

i(xi − yi)
2 − a)(

∑
j(xj − yj)

2 − b)

= (
∑

i y
2
i )(
∑

j y
2
j )−

∑
i 2xiyi(

∑
j yj

2)−
∑

j 2xjyj(
∑

i yi
2)+

∑
i,j(2xiyi)(2xjyj)+(

∑
j yj

2)a+(
∑

i yi
2)b−∑

i(2xiyi)b−
∑

j(2xjyj)a

Therefore Qx(y) ∈ Span({(
∑

i yi
2)(
∑

j yj
2)} ∪ {yi(

∑
j yj

2) : i ∈ [n]} ∪ {yiyj : i, j ∈ [n]} ∪ {
∑

j yj
2} ∪ {yi :

i ∈ [n]} ∪ {1})

Spanned by n2 +O(n) functions

Proof of claim 4.
Suppose

∑
x λxQx = 0

Take any x′ ∈ S and sub it into
∑

x λxQx∑
x λxQx(x

′) = 0

But all of the terms a Qx(x
′) = 0 except the case where x = x′ in that case Qx′(x′) = ab

Therefore 0 =
∑

x λxQx(x
′) = λx′ab

So λx′ = 0

But this was for any x′ ∈ S so the Qx are linearly independent
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5 Complete Bipartite Graph

We colour the edge (x,y) Red if ⟨x, y⟩ = 1 and Blue if ⟨x, y⟩ = 0

Claim 8. This graph has no monochromatic KO(
√
n),O(

√
n)

Proof of claim.
Case 1: Monochromatic Blue KO(

√
n),O(

√
n)

For any S ⊂ L and T ⊂ R with |S| =
√
n and |T | =

√
n

Suppose ⟨x, y⟩ = 0 ∀x ∈ S and y ∈ T

Then span(S) ⊥ span(T)

Therefore dim(span(S)) + dim(span(T)) ≤ k

|span(S)| ≤ 2
k
2 =

√
n or

|span(T )| ≤ 2
k
2 =

√
n

Case 2: Monochromatic Red KO(
√
n),O(

√
n)

For any S ⊂ L and T ⊂ R with |S| >
√
n and |T | >

√
n

Suppose ⟨x, y⟩ = 1∀x ∈ S, y ∈ T

Then consider (1, x), (1, y) ∈ Fk+1
2

These are orthogonal sets again so either

|S| or |T | ≤
√
2k+1 ≤ 2

√
n
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