Lecture 10: Linear Algebra Methods

Combinatorial Methods (Winter 2023)
University of Toronto Swastik Kopparty
Scribes: Yuxi Wang and William Groff

1 Projective Plane

Let p be prime, consider \mathbb{F}_{p}^{2}. Recall:

Point of infinity: if two lines are parallel, they intersect at a "point of infinity".
Example 1. $\mathbb{F}_{p}^{3} \backslash\{0\} /$ scaling: $(\{1,1,2\}=\{2,2,4\})$
$\| \mathbb{F}_{p}^{3} \backslash\{0\} /$ scaling $\|=\frac{p^{3}-1}{p-1}=p^{2}+p+1$. Note: the $p+1$ points are extra points at infinity.
Also: $\left\|\left\{(x, y, 1): x, y \in \mathbb{F}_{p}\right\} \cup\left\{(x, 1,0): x \in \mathbb{F}_{p}\right\} \cup(1,0,0)\right\|=\left\|\mathbb{F}_{p}^{2}\right\|+\left\|\mathbb{F}_{p}\right\|+1=p^{2}+p+1$.
(a, b, c) represents line $a x+b y+c=0$.
Given a line (a, b, c), how many points are on the line? That is, how many $(x, y, z) \in \mathbb{F}_{p}^{3} \backslash\{0\} /$ scaling s.t. $a x+b y+c z=0$?
p points from $\mathbb{F}_{p}^{2}, 1$ point from $\mathbb{F}_{p}, 0$ or 1 point from $(1,0,0)$.
Note: without scaling, p^{2} points satisfy $\langle(a, b, c),(x, y, z)\rangle=0$ (the orthogonal plane).
Observation 2. Every line has $p+1$ points; every point on $p+1$ lines (of slopes $0,1, \ldots, \infty$); in total there are $p^{2}+p+1$ points and $p^{2}+p+1$ lines.

Fano plane: the smallest finite projective plane

2 Oddtown

A town has n people. The people form clubs (sets of people). The size of each club is odd. In any 2 clubs, the size of the intersection is even. What is the maximum number of clubs you can form?

Observation 3. the clubs must be an anti-chain (otherwise there is odd intersection);
Lower bound: $\{\{i\}: i \in[n]\}$.

Consider a projective plane with p odd, the lines are sets of size $p+1$ (even), intersections has size 1 (odd) points \sim people, lines \sim clubs, so there can be n clubs.

Claim 4. The number of clubs is at most n.

Proof. For each club c_{i} :
create vector $v_{i} \in \mathbb{F}_{2}^{n}$ s.t. $v_{i j}= \begin{cases}0 & \text { if person } \mathrm{j} \text { not in club } c_{i} \\ 1 & \text { if person } \mathrm{j} \text { is in club } c_{i}\end{cases}$
Note that $\left\langle v_{i}, v_{j}\right\rangle=0 \bmod 2$ if $i \neq j ;\left\langle v_{i}, v_{i}\right\rangle=1 \bmod 2 .($ an "orthonormal basis" of size $n)$.
Then, let $M=\left[\begin{array}{llll}v_{1} & v_{2} & \ldots & v_{m}\end{array}\right] . M$ is an $n \times m$ matrix, and $M^{\top} M=I_{M}$.
We know $\operatorname{rank}(A B) \leq \max (\operatorname{rank}(A), \operatorname{rank}(B))$, so m cannot be greater than n.

Question: what if the club size must be even?
Consider: 1 and 2 always join clubs together, so as 3 and $4, \ldots, 2 k+1,2 k+2$.
Then, we can construct $2^{n / 2}$ clubs.

Let $V=\left\{v_{i}: i \in[m]\right\}$. For all $v, w \in V,\langle v, w\rangle=0$.
Let $V^{\perp}=\{w:\langle v, w\rangle=0, v v \in V\}$. Then, $\operatorname{dim}\left(V^{\perp}\right)=n-\operatorname{dim}(V)$.
Also, $V \subseteq V^{\perp}$, so $\operatorname{dim}(V) \leq \operatorname{dim}\left(V^{\perp}\right)=n-\operatorname{dim}(V)$. So $\operatorname{dim}(V) \leq n / 2$.
Note: in this case, $M^{\top} M$ has all zeros on the diagonal, so the rank is $n-1$.

Summary:

size	intersection	maximum club number
odd	even	n
even	even	$2^{n / 2}$
even	odd	n or $n+1$
odd	odd	$\approx 2^{n / 2}$

3 Fisher's Inequality

Proposition 5. $A_{1}, \ldots, A_{m} \subseteq[n]$ are non-empty. $\left|A_{i} \cap A_{j}\right|=\lambda$ for all $i \neq j,(\lambda \in[n])$. Then, $m \leq f(n)=n$.
Proof. Let v_{1}, \ldots, v_{m} be indicator vectors of $A_{i} \in \mathbb{F}^{n} / 2^{n}$.
Then, $\left\langle v_{i}, v_{j}\right\rangle=\lambda$ for $i \neq j$.
Let $M=\left[\begin{array}{lll}v_{1} & \ldots & v_{m}\end{array}\right] . M$ is an $n \times m$ matrix, and $M^{\top} M$ is an $m \times m$ matrix with λ in all entries off the diagonal.

At most 1 set A_{i}^{*} has size λ.
If so, $\lambda \neq 0$, all other sets must contain it and are disjoint after taking away A_{i}^{*}.
So there are $\leq n-\lambda$ other sets.
The total number of sets is $\leq(n-\lambda)+1 \leq n$.
Case 2: all sets have size $>\lambda$.
Note: matrix $A=\left[\begin{array}{cccc}>\lambda & \lambda & \cdots & \lambda \\ \lambda & >\lambda & \ddots & \vdots \\ \vdots & \ddots & >\lambda & \lambda \\ \lambda & \ldots & \lambda & >\lambda\end{array}\right]-[\lambda]$ has full rank.
So the rank of the first matrix above is $\geq m-1$, so $m \leq n+1$.
For $x \in \mathbb{R}^{m}$, if $x \neq 0$,

$$
\begin{aligned}
x^{\top} A x & =\sum_{i, j} x_{i} A_{i j} x_{j} \\
& =\sum_{i}\left(a_{i}-\lambda\right) x_{i}^{2}+\sum_{i, j} \lambda x_{i} x_{j} \\
& =\sum_{i}\left(a_{i}-\lambda\right) x_{i}^{2}+\lambda\left(\sum_{i} x_{i}\right)^{2}>0 .
\end{aligned}
$$

So A has full rank.

4 2-Distance Sets

Let Δ be the Euclidean Distance
Let $S \subset R$ such that $\exists a, b$ such that $\forall x, y \in S$ with $x \neq y$
$\Delta(x, y) \in\{a, b\}$

Example

$S=\left\{x \in\{0,1\}^{n}\right.$ with exactly two ones $\}$
Then $|S|=\mathcal{O}\left(n^{2}\right)$

We claim that this is the best we can do.
To show this we first define a polynomial $P\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots y_{n}\right)$ in the following way
$P(\vec{x}, \vec{y})=\left(\|\vec{x}-\vec{y}\|^{2}-a\right)\left(\|\vec{x}-\vec{y}\|^{2}-b\right)$
Then if we take $\mathrm{x}, \mathrm{y} \in S$
$P(x, y)= \begin{cases}0 & \text { if } x \neq y \\ a b & \text { if } x=y\end{cases}$
Now for each $x \in S$ consider the polynomial
$Q_{x}\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{R}\left[y_{1}, \ldots, y_{n}\right]$ such that
$Q_{x}(y)=P(x, y)$
Claim 6. There exists some linear space V of dimension $\mathcal{O}\left(n^{2}\right)$ such that $Q_{x} \in V$ for all $x \in S$
Claim 7. $\left\{Q_{x}: x\right\}$ are linearly independent
Proof of claim 3.
$Q_{x}(y)=\left(\|x-y\|^{2}-a\right)\left(\|x-y\|^{2}-b\right)$
$=\left(\sum_{i}\left(x_{i}-y_{i}\right)^{2}-a\right)\left(\sum_{j}\left(x_{j}-y_{j}\right)^{2}-b\right)$
$=\left(\sum_{i} y_{i}^{2}\right)\left(\sum_{j} y_{j}^{2}\right)-\sum_{i} 2 x_{i} y_{i}\left(\sum_{j} y_{j}^{2}\right)-\sum_{j} 2 x_{j} y_{j}\left(\sum_{i} y_{i}^{2}\right)+\sum_{i, j}\left(2 x_{i} y_{i}\right)\left(2 x_{j} y_{j}\right)+\left(\sum_{j} y_{j}^{2}\right) a+\left(\sum_{i} y_{i}^{2}\right) b-$
$\sum_{i}\left(2 x_{i} y_{i}\right) b-\sum_{j}\left(2 x_{j} y_{j}\right) a$

Therefore $Q_{x}(y) \in \operatorname{Span}\left(\left\{\left(\sum_{i} y_{i}{ }^{2}\right)\left(\sum_{j} y_{j}{ }^{2}\right)\right\} \cup\left\{y_{i}\left(\sum_{j} y_{j}{ }^{2}\right): i \in[n]\right\} \cup\left\{y_{i} y_{j}: i, j \in[n]\right\} \cup\left\{\sum_{j} y_{j}{ }^{2}\right\} \cup\left\{y_{i}:\right.\right.$ $i \in[n]\} \cup\{1\})$
Spanned by $n^{2}+\mathcal{O}(n)$ functions
Proof of claim 4.
Suppose $\sum_{x} \lambda_{x} Q_{x}=0$
Take any $x^{\prime} \in S$ and sub it into $\sum_{x} \lambda_{x} Q_{x}$
$\sum_{x} \lambda_{x} Q_{x}\left(x^{\prime}\right)=0$
But all of the terms a $Q_{x}\left(x^{\prime}\right)=0$ except the case where $x=x^{\prime}$ in that case $Q_{x^{\prime}}\left(x^{\prime}\right)=a b$
Therefore $0=\sum_{x} \lambda_{x} Q_{x}\left(x^{\prime}\right)=\lambda_{x^{\prime}} a b$
So $\lambda_{x^{\prime}}=0$
But this was for any $x^{\prime} \in S$ so the Q_{x} are linearly independent

5 Complete Bipartite Graph

We colour the edge (x, y) Red if $\langle x, y\rangle=1$ and Blue if $\langle x, y\rangle=0$
Claim 8. This graph has no monochromatic $K_{\mathcal{O}(\sqrt{n}), \mathcal{O}(\sqrt{n})}$
Proof of claim.
Case 1: Monochromatic Blue $K_{\mathcal{O}(\sqrt{n}), \mathcal{O}(\sqrt{n})}$
For any $S \subset L$ and $T \subset R$ with $|S|=\sqrt{n}$ and $|T|=\sqrt{n}$
Suppose $\langle x, y\rangle=0 \forall x \in S$ and $y \in T$
Then $\operatorname{span}(\mathrm{S}) \perp \operatorname{span}(\mathrm{T})$
Therefore $\operatorname{dim}(\operatorname{span}(\mathrm{S}))+\operatorname{dim}(\operatorname{span}(\mathrm{T})) \leq \mathrm{k}$
$|\operatorname{span}(S)| \leq 2^{\frac{k}{2}}=\sqrt{n}$ or $|\operatorname{span}(T)| \leq 2^{\frac{k}{2}}=\sqrt{n}$
Case 2: Monochromatic Red $K_{\mathcal{O}(\sqrt{n}), \mathcal{O}(\sqrt{n})}$
For any $S \subset L$ and $T \subset R$ with $|S|>\sqrt{n}$ and $|T|>\sqrt{n}$
Suppose $\langle x, y\rangle=1 \forall x \in S, y \in T$
Then consider $(1, x),(1, y) \in \mathbb{F}_{2}^{k+1}$
These are orthogonal sets again so either
$|S|$ or $|T| \leq \sqrt{2^{k+1}} \leq 2 \sqrt{n}$

