Topics in Error-Correcting Codes (Fall 2022) University of Toronto Swastik Kopparty Scribe: Haohua Tang and Lawrence Li

1 Bipartite Expander Graph

First we introduce the definitions of Bipartite Expander Graph. We assume these are *d*-regular.

Definition 1. An (α, β) matrix expander bipartite graph is a bipartite graph (V = L + R, E) such that

 $\forall S \subseteq L, |S| \le \alpha n \implies |\Gamma(S)| \ge \beta |S|$

Definition 2. A λ spectral absolute bipartite expander graph is a bipartite graph (V = L + R, E) such that λ is the second largest absolute value of singular values of the adjacency matrix.

Lemma 3. Expander Mixing Lemma for Bipartite Expander:

$$\forall S \subseteq L, T \subseteq R, \left| e(S,T) - \frac{d}{n} |S| |T| \right| \leq \lambda \sqrt{|S||T|}$$

2 ABNNR Codes

2.1 Encoding

The Alon-Brooks-Naor-Naor-Roth(ABNNR) codes can be constructed basing on a given code. Given code $C \subseteq \Sigma^n$ with dimension k and distance δn , we take an (α, β) expander, in which there are n vertices on each side. Let c be a code word in C. For each vertex l_i on the left side, we associate it with c_i , and we send its value to the right via its edges. That is, for each vertex r_i on the right side, we associate it with tuple of $(c_{\Gamma(r_i)_1}, c_{\Gamma(r_i)_2}, ..., c_{\Gamma(r_i)_d})$, where neighbours in Γ are in increasing order.

The operation above gives a code word $\tilde{c} \in \tilde{\Sigma}^n$, where $\tilde{\Sigma} = \Sigma^d$, and thus we can obtain a code $\tilde{C} \subseteq \tilde{\Sigma}^n$ by performing it on every c in C.

Claim 4. If $\delta \leq \alpha$, then \tilde{C} has distance at least $\beta \delta n$.

Proof. Consider $\tilde{c}_1, \tilde{c}_2 \in \tilde{C}$. Let $S = \{i \in L \text{ s.t. } (c_1)_i \neq (c_2)_i\}$, where c_1, c_2 are the code words in C that from which we obtain \tilde{c}_1, \tilde{c}_2 by the ABNNR construction. Then $|S| \geq \delta n$. This implies $\exists S' \subseteq S, |S'| = \delta n$. By our assumption of $\delta \leq \alpha$, using the expansion property we can obtain $|\Gamma(S')| \geq \beta |S'|$.

By how we construct the ABNNR code, for all $j \in R$ s.t. $j \in \Gamma(S)$, $(\tilde{c}_1)_j \neq (\tilde{c}_2)_j$. Thus we can see

$$\Delta(\tilde{c}_1, \tilde{c}_2) \ge |\Gamma(S)|$$
$$\ge |\Gamma(S')|$$
$$\ge \beta |S'|$$
$$= \beta \delta n$$

2.2 Decoding

Given $y \in \tilde{\Sigma}^n$ s.t. $\exists \tilde{c} \in \tilde{C}, \Delta(y, \tilde{c}) \leq \gamma n$ for some $\gamma \leq \frac{\alpha}{2}$, we create $r \in \Sigma^n$ by majority:

$$r_i = \begin{cases} b & \text{if } (y_j)_i = b \text{ for more than } d/2 \text{ neighbours } j \in R \text{ of i} \\ \text{JUNK} & \text{otherwise} \end{cases}$$
(1)

Claim 5. $\Delta(r,c) \leq \frac{\gamma}{\beta - \frac{d}{2}} n$

Proof. Given $T \subseteq R, |T| \leq \gamma n$, define $S = \{i \in L, |\Gamma(S) \cap T| \geq \frac{d}{2}\}$. First we will bound the size of S.

Since the graph is *d*-regular, we know that $d|T| \leq \frac{d}{2}|S|$, which implies $|S| \leq 2|T| \leq 2\gamma n \leq \alpha n$. By the expander property, $|\Gamma(S)| \geq \beta |S|$.

We know that $e(S,T) \ge \frac{d}{2}|S|$ by the definition of S, which means $e(S, R \setminus T) \le \frac{d}{2}|S|$. Thus we have $\Gamma(S) \le |T| + \frac{d}{2}|S|$.

Combining these we have

$$|S| \leq \frac{|T|}{\beta - \frac{d}{2}} \leq \frac{\gamma}{\beta - \frac{d}{2}}n$$

We let $T \subseteq R$ to be the set that indicates errors in y, then $|T| \leq \gamma n$. Observe that $S \subseteq L$ indicates where errors may occur after the decoding algorithm, equivalently, for all $i \notin S$, r_i must be correct. Thus we can conclude that

$$\Delta(r,c) \le |S| \le \frac{\gamma}{\beta - \frac{d}{2}}n$$

By this claim, we can use a decoder of C on r to retrieve the original string.

3 Alon-Edmonds-Luby(AEL) Codes

AEL codes are similar in spirit to concatenation codes, combined with ideas from ABNNR codes. We first begin with a small code $C_0 \subseteq \Sigma_0^d$, with $|C_0| = |\Sigma|$ and encoding function Enc: $\Sigma \to C_0$. Next, take a λ -absolute spectral bipartite expander.

AEL codes allow us to get ϵ -close to the singleton bound with alphabet size O(1).

We begin with a small code C_0 :

- 1. $C_0 \subseteq \Sigma_0^d$, with $|C_0| = |\Sigma|$.
- 2. Encoding function Enc: $\Sigma \to C_0$.
- 3. Dimension $k = (1 \epsilon)n$.
- 4. Rate R_0 .
- 5. Distance δ .

And a Reed-Solomon code:

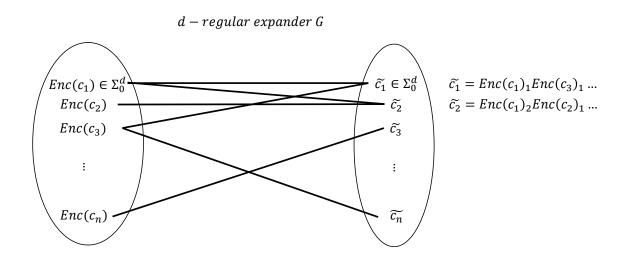
- 1. $C \subseteq \Sigma^n$, with $|\Sigma| = n$.
- 2. Rate 1ϵ .
- 3. Distance ϵ .

And a *d*-regular λ -absolute bipartite expander *G*.

We end with a code \tilde{C} :

- 1. $\tilde{C} \subseteq \tilde{\Sigma}^n$, with $\tilde{\Sigma} = \Sigma_0^d$.
- 2. New encoding function from the reed solomon code to the new code Enc: $\Sigma^n \to \tilde{C}$. If $\tilde{c} = c_1 c_2 ... c_n, c_i \in \Sigma$, then $\text{Enc}(\tilde{c}) = \tilde{c_1} \tilde{c_2} ... \tilde{c_n}$, where $\tilde{c_i} = \{(\text{Enc}(c_j))_k, i \text{ is the } k \text{-th neighbour of } j \text{ in } G\}$ for $c_i \in \Sigma$.
- 3. Rate $R_0 \epsilon$.
- 4. Distance $\delta \epsilon$.

We construct the code as follows: For each element $c = c_1 c_2 \dots c_n \in C$ in the Reed-Solomon code, we let the element c' = Enc(c) be an element in the new code \tilde{C} .



Rate of \tilde{C} : Let the rate of the new code be R. We have:

$$(|\tilde{\Sigma}|^{Rn}) = |\tilde{C}| = |\Sigma|^{(1-\epsilon)n}$$
$$(|\Sigma_0|^d)^{Rn} = |\Sigma|^{(1-\epsilon)n}$$

We know that $|\Sigma_0|^{R_0d} = |\Sigma|$, so we have:

$$|\Sigma_0|^{Rd} = |\Sigma|^{1-\epsilon}$$
$$\implies R = R_0(1-\epsilon)$$

Distance of \tilde{C} : Take codewords $\tilde{w}_1, \tilde{w}_2 \in \Sigma_0^{dn}$, and let w_1 and w_2 be such that $\operatorname{Enc}(w_1) = \tilde{w}_1$, and $\operatorname{Enc}(w_2) = \tilde{w}_2$. Let S be the indices where w_1 and w_2 differ, $S = \{i \in [n] | (w_1)_i \neq (w_2)_i\}$, and let T be the indices where \tilde{w}_1 and \tilde{w}_2 differ, $T = \{j \in [n] | (\tilde{w}_1)_j \neq (\tilde{w}_2)_j\}$. Our objective is to show that |T| is large. Since w_1 and w_2 are words from a Reed-Solomon code of distance ϵ , we have the guarantee that $|S| \geq \epsilon n$.

Let *H* be the set of *i*, *j* pairs such that $(\operatorname{Enc}(w_1)_i)_j \neq (\operatorname{Enc}(w_2)_i)_j$. Notice that for any vertex in *S*, we have that $(w_1)_i \neq (w_2)_i$. Since Enc is an error correcting code of distance δ , we have that $\operatorname{Enc}((w_1)_i)$ and $\operatorname{Enc}((w_2)_i)$ differ on at least δd coordinates. Hence *H* has at least δd edges incident on every vertex of *S*.

We can now obtain a bound on the size of T:

$$\begin{split} e(S,T) &\geq \delta d|S| \\ \delta d|S| &\leq e(S,T) \leq \frac{d}{n} |S||T| + \lambda \sqrt{|S||T|} \quad \text{by the expander mixing lemma.} \\ \implies |T| \geq n\delta - n(\frac{\lambda}{d}) \frac{\sqrt{|S||T|}}{|S|} \\ |T| \geq n\delta - n\frac{\lambda}{d} \sqrt{\delta\epsilon^{-1}} \quad \text{since } S \geq \epsilon n, T \leq n\delta \\ |T| \geq n\delta - n\epsilon \quad \text{pick } \lambda \leq d\epsilon^{1.5} \delta^{-0.5} \end{split}$$

This implies that the distance is at least $\delta - \epsilon$.

This produces a code that is ϵ -close to the singleton bound with alphabet size O(1).

This implies the following theorem:

Theorem 6. Let $p \in [0, \frac{1}{2})$. Define $C_p = 1 - H(p)$, where $H(p) = -p \log p - (1-p) \log (1-p)$ is the entropy of p. If $R < C_p$, then there exists codes in $\{0,1\}^n$ of length n, rate R, such that given a corrupted codeward r prodoced by taking a true codeward, flipping each bit with probability p independently, then:

Pr[the nearest codeward to r is the original codeward] = 1 - exp(-n)

Conversely, if $r > C_p$, any procedure will be wrong with probability 1 - exp(-n).

Furthermore, this code is explicit with a polynomial time decoding algorithm.

Theorem 7. There exists an explicit code and poly time decoding algorithm for the above.