Lecture 9: ABNNR and AEL expander codes

Topics in Error-Correcting Codes (Fall 2022)
University of Toronto
Swastik Kopparty
Scribe: Haohua Tang and Lawrence Li

1 Bipartite Expander Graph

First we introduce the definitions of Bipartite Expander Graph. We assume these are d-regular.
Definition 1. An (α, β) matrix expander bipartite graph is a bipartite graph $(V=L+R, E)$ such that

$$
\forall S \subseteq L,|S| \leq \alpha n \Longrightarrow|\Gamma(S)| \geq \beta|S|
$$

Definition 2. A λ spectral absolute bipartite expander graph is a bipartite graph $(V=L+R, E)$ such that λ is the second largest absolute value of singular values of the adjacency matrix.

Lemma 3. Expander Mixing Lemma for Bipartite Expander:

$$
\forall S \subseteq L, T \subseteq R,\left|e(S, T)-\frac{d}{n}\right| S| | T| | \leq \lambda \sqrt{|S||T|}
$$

2 ABNNR Codes

2.1 Encoding

The Alon-Brooks-Naor-Naor-Roth(ABNNR) codes can be constructed basing on a given code. Given code $C \subseteq \Sigma^{n}$ with dimension k and distance δn, we take an (α, β) expander, in which there are n vertices on each side. Let c be a code word in C. For each vertex l_{i} on the left side, we associate it with c_{i}, and we send its value to the right side via its edges. That is, for each vertex r_{i} on the right side, we associate it with tuple of $\left(c_{\Gamma\left(r_{i}\right)_{1}}, c_{\Gamma\left(r_{i}\right)_{2}}, \ldots c_{\Gamma\left(r_{i}\right)_{d}}\right)$, where neighbours in Γ are in increasing order.
The operation above gives a code word $\tilde{c} \in \tilde{\Sigma}^{n}$, where $\tilde{\Sigma}=\Sigma^{d}$, and thus we can obtain a code $\tilde{C} \subseteq \tilde{\Sigma}^{n}$ by performing it on every c in C.

Claim 4. If $\delta \leq \alpha$, then \tilde{C} has distance at least $\beta \delta n$.
Proof. Consider $\tilde{c}_{1}, \tilde{c}_{2} \in \tilde{C}$. Let $S=\left\{i \in L\right.$ s.t. $\left.\left(c_{1}\right)_{i} \neq\left(c_{2}\right)_{i}\right\}$, where c_{1}, c_{2} are the code words in C that from which we obtain $\tilde{c}_{1}, \tilde{c}_{2}$ by the ABNNR construction. Then $|S| \geq \delta n$. This implies $\exists S^{\prime} \subseteq S,\left|S^{\prime}\right|=\delta n$. By our assumption of $\delta \leq \alpha$, using the expansion property we can obtain $\left|\Gamma\left(S^{\prime}\right)\right| \geq \beta\left|S^{\prime}\right|$.

By how we construct the ABNNR code, for all $j \in R$ s.t. $j \in \Gamma(S),\left(\tilde{c}_{1}\right)_{j} \neq\left(\tilde{c}_{2}\right)_{j}$. Thus we can see

$$
\begin{aligned}
\Delta\left(\tilde{c}_{1}, \tilde{c}_{2}\right) & \geq|\Gamma(S)| \\
& \geq\left|\Gamma\left(S^{\prime}\right)\right| \\
& \geq \beta\left|S^{\prime}\right| \\
& =\beta \delta n
\end{aligned}
$$

2.2 Decoding

Given $y \in \tilde{\Sigma}^{n}$ s.t. $\exists \tilde{c} \in \tilde{C}, \Delta(y, \tilde{c}) \leq \gamma n$ for some $\gamma \leq \frac{\alpha}{2}$, we create $r \in \Sigma^{n}$ by majority:

$$
r_{i}= \begin{cases}b & \text { if }\left(y_{j}\right)_{i}=b \text { for more than } d / 2 \text { neighbours } j \in R \text { of } \mathrm{i} \tag{1}\\ \text { JUNK } & \text { otherwise }\end{cases}
$$

Claim 5. $\Delta(r, c) \leq \frac{\gamma}{\beta-\frac{d}{2}} n$
Proof. Given $T \subseteq R,|T| \leq \gamma n$, define $S=\left\{i \in L,|\Gamma(S) \cap T| \geq \frac{d}{2}\right\}$. First we will bound the size of S.

Since the graph is d-regular, we know that $d|T| \leq \frac{d}{2}|S|$, which implies $|S| \leq 2|T| \leq 2 \gamma n \leq \alpha n$. By the expander property, $|\Gamma(S)| \geq \beta|S|$.

We know that $e(S, T) \geq \frac{d}{2}|S|$ by the definition of S, which means $e(S, R \backslash T) \leq \frac{d}{2}|S|$. Thus we have $\Gamma(S) \leq|T|+\frac{d}{2}|S|$.

Combining these we have

$$
|S| \leq \frac{|T|}{\beta-\frac{d}{2}} \leq \frac{\gamma}{\beta-\frac{d}{2}} n
$$

We let $T \subseteq R$ to be the set that indicates errors in y, then $|T| \leq \gamma n$. Observe that $S \subseteq L$ indicates where errors may occur after the decoding algorithm, equivalently, for all $i \notin S, r_{i}$ must be correct. Thus we can conclude that

$$
\Delta(r, c) \leq|S| \leq \frac{\gamma}{\beta-\frac{d}{2}} n
$$

By this claim, we can use a decoder of C on r to retrieve the original string.

3 Alon-Edmonds-Luby(AEL) Codes

AEL codes are similar in spirit to concatenation codes, combined with ideas from ABNNR codes. We first begin with a small code $C_{0} \subseteq \Sigma_{0}^{d}$, with $\left|C_{0}\right|=|\Sigma|$ and encoding function Enc: $\Sigma \rightarrow C_{0}$. Next, take a λ-absolute spectral bipartite expander.

AEL codes allow us to get ϵ-close to the singleton bound with alphabet size $O(1)$.
We begin with a small code C_{0} :

1. $C_{0} \subseteq \Sigma_{0}^{d}$, with $\left|C_{0}\right|=|\Sigma|$.
2. Encoding function Enc: $\Sigma \rightarrow C_{0}$.
3. Dimension $k=(1-\epsilon) n$.
4. Rate R_{0}.
5. Distance δ.

And a Reed-Solomon code:

1. $C \subseteq \Sigma^{n}$, with $|\Sigma|=n$.
2. Rate $1-\epsilon$.
3. Distance ϵ.

And a d-regular λ-absolute bipartite expander G.
We end with a code \tilde{C} :

1. $\tilde{C} \subseteq \tilde{\Sigma}^{n}$, with $\tilde{\Sigma}=\Sigma_{0}^{d}$.
2. New encoding function from the reed solomon code to the new code Enc: $\Sigma^{n} \rightarrow \tilde{C}$. If $\tilde{c}=$ $c_{1} c_{2} \ldots c_{n}, c_{i} \in \Sigma$, then $\operatorname{Enc}(\tilde{c})=\tilde{c_{1}} \tilde{c_{2}} \ldots \tilde{c_{n}}$, where $\tilde{c_{i}}=\left\{\left(\operatorname{Enc}\left(c_{j}\right)\right)_{k}, i\right.$ is the k-th neighbour of j in $\left.G\right\}$ for $c_{i} \in \Sigma$.
3. Rate $R_{0}-\epsilon$.
4. Distance $\delta-\epsilon$.

We construct the code as follows: For each element $c=c_{1} c_{2} \ldots c_{n} \in C$ in the Reed-Solomon code, we let the element $c^{\prime}=\operatorname{Enc}(c)$ be an element in the new code \tilde{C}.

d - regular expander G

Rate of \tilde{C} : Let the rate of the new code be R. We have:

$$
\begin{aligned}
\left(|\tilde{\Sigma}|^{R n}\right) & =|\tilde{C}|=|\Sigma|^{(1-\epsilon) n} \\
\left(\left|\Sigma_{0}\right|^{d}\right)^{R n} & =|\Sigma|^{(1-\epsilon) n}
\end{aligned}
$$

We know that $\left|\Sigma_{0}\right|^{R_{0} d}=|\Sigma|$, so we have:

$$
\begin{aligned}
& \left|\Sigma_{0}\right|^{R d}=|\Sigma|^{1-\epsilon} \\
\Longrightarrow & R=R_{0}(1-\epsilon)
\end{aligned}
$$

Distance of \tilde{C} : Take codewords $\tilde{w_{1}}, \tilde{w_{2}} \in \Sigma_{0}^{d n}$, and let w_{1} and w_{2} be such that $\operatorname{Enc}\left(w_{1}\right)=\tilde{w}_{1}$, and $\operatorname{Enc}\left(w_{2}\right)=\tilde{w_{2}}$. Let S be the indices where w_{1} and w_{2} differ, $S=\left\{i \in[n] \mid\left(w_{1}\right)_{i} \neq\left(w_{2}\right)_{i}\right\}$, and let T be the indices where \tilde{w}_{1} and \tilde{w}_{2} differ, $T=\left\{j \in[n] \mid\left(\tilde{w}_{1}\right)_{j} \neq\left(\tilde{w}_{2}\right)_{j}\right\}$. Our objective is to show that $|T|$ is large. Since w_{1} and w_{2} are words from a Reed-Solomon code of distance ϵ, we have the guarantee that $|S| \geq \epsilon n$.

Let H be the set of i, j pairs such that $\left(\operatorname{Enc}\left(w_{1}\right)_{i}\right)_{j} \neq\left(\operatorname{Enc}\left(w_{2}\right)_{i}\right)_{j}$. Notice that for any vertex in S, we have that $\left(w_{1}\right)_{i} \neq\left(w_{2}\right)_{i}$. Since Enc is an error correcting code of distance δ, we have that $\operatorname{Enc}\left(\left(w_{1}\right)_{i}\right)$ and $\operatorname{Enc}\left(\left(w_{2}\right)_{i}\right)$ differ on at least δd coordinates. Hence H has at least δd edges incident on every vertex of S.

We can now obtain a bound on the size of T :

$$
\begin{aligned}
e(S, T) & \geq \delta d|S| \\
\delta d|S| \leq e(S, T) & \leq \frac{d}{n}|S||T|+\lambda \sqrt{|S||T|} \quad \text { by the expander mixing lemma. } \\
\Longrightarrow|T| & \geq n \delta-n\left(\frac{\lambda}{d}\right) \frac{\sqrt{|S||T|}}{|S|} \\
|T| & \geq n \delta-n \frac{\lambda}{d} \sqrt{\delta \epsilon^{-1}} \quad \text { since } S \geq \epsilon n, T \leq n \delta \\
|T| & \geq n \delta-n \epsilon \quad \text { pick } \lambda \leq d \epsilon^{1.5} \delta^{-0.5}
\end{aligned}
$$

This implies that the distance is at least $\delta-\epsilon$.
This produces a code that is ϵ-close to the singleton bound with alphabet size $O(1)$.
This implies the following theorem:
Theorem 6. Let $p \in\left[0, \frac{1}{2}\right)$. Define $C_{p}=1-H(p)$, where $H(p)=-p \log p-(1-p) \log (1-p)$ is the entropy of p. If $R<C_{p}$, then there exists codes in $\{0,1\}^{n}$ of length n, rate R, such that given a corrupted codeward r prodoced by taking a true codeward, flipping each bit with probability p independently, then:

$$
\operatorname{Pr}[\text { the nearest codeward to } r \text { is the original codeward }]=1-\exp (-n)
$$

Conversely, if $r>C_{p}$, any procedure will be wrong with probability $1-\exp (-n)$.
Furthermore, this code is explicit with a polynomial time decoding algorithm.
Theorem 7. There exists an explicit code and poly time decoding algorithm for the above.

