
Lecture 9: ABNNR and AEL expander codes

Topics in Error-Correcting Codes (Fall 2022)
University of Toronto

Swastik Kopparty
Scribe: Haohua Tang and Lawrence Li

1 Bipartite Expander Graph

First we introduce the definitions of Bipartite Expander Graph. We assume these are d-regular.

Definition 1. An (α, β) matrix expander bipartite graph is a bipartite graph (V = L+R,E) such
that

∀S ⊆ L, |S| ≤ αn =⇒ |Γ(S)| ≥ β|S|

Definition 2. A λ spectral absolute bipartite expander graph is a bipartite graph (V = L + R,E)
such that λ is the second largest absolute value of singular values of the adjacency matrix.

Lemma 3. Expander Mixing Lemma for Bipartite Expander:

∀S ⊆ L, T ⊆ R,

∣∣∣∣e(S, T)− d

n
|S||T |

∣∣∣∣ ≤ λ
√

|S||T |

2 ABNNR Codes

2.1 Encoding

The Alon-Brooks-Naor-Naor-Roth(ABNNR) codes can be constructed basing on a given code.
Given code C ⊆ Σn with dimension k and distance δn, we take an (α, β) expander, in which there
are n vertices on each side. Let c be a code word in C. For each vertex li on the left side, we
associate it with ci, and we send its value to the right side via its edges. That is, for each vertex ri
on the right side, we associate it with tuple of (cΓ(ri)1 , cΓ(ri)2 , ...cΓ(ri)d), where neighbours in Γ are
in increasing order.

The operation above gives a code word c̃ ∈ Σ̃n, where Σ̃ = Σd, and thus we can obtain a code
C̃ ⊆ Σ̃n by performing it on every c in C.

Claim 4. If δ ≤ α, then C̃ has distance at least βδn.

Proof. Consider c̃1, c̃2 ∈ C̃. Let S = {i ∈ L s.t. (c1)i ̸= (c2)i}, where c1, c2 are the code words in
C that from which we obtain c̃1, c̃2 by the ABNNR construction. Then |S| ≥ δn. This implies
∃S′ ⊆ S, |S′| = δn. By our assumption of δ ≤ α, using the expansion property we can obtain
|Γ(S′)| ≥ β|S′|.

1

By how we construct the ABNNR code, for all j ∈ R s.t. j ∈ Γ(S), (c̃1)j ̸= (c̃2)j . Thus we can see

∆(c̃1, c̃2) ≥ |Γ(S)|
≥ |Γ(S′)|
≥ β|S′|
= βδn

2.2 Decoding

Given y ∈ Σ̃n s.t. ∃c̃ ∈ C̃,∆(y, c̃) ≤ γn for some γ ≤ α
2 , we create r ∈ Σn by majority:

ri =

{
b if (yj)i = b for more than d/2 neighbours j ∈ R of i

JUNK otherwise
(1)

Claim 5. ∆(r, c) ≤ γ

β− d
2

n

Proof. Given T ⊆ R, |T | ≤ γn, define S = {i ∈ L, |Γ(S)∩T | ≥ d
2}. First we will bound the size of S.

Since the graph is d-regular, we know that d|T | ≤ d
2 |S|, which implies |S| ≤ 2|T | ≤ 2γn ≤ αn. By

the expander property, |Γ(S)| ≥ β|S|.

We know that e(S, T) ≥ d
2 |S| by the definition of S, which means e(S,R \T) ≤ d

2 |S|. Thus we have
Γ(S) ≤ |T |+ d

2 |S|.

Combining these we have

|S| ≤ |T |
β − d

2

≤ γ

β − d
2

n

We let T ⊆ R to be the set that indicates errors in y, then |T | ≤ γn. Observe that S ⊆ L indicates
where errors may occur after the decoding algorithm, equivalently, for all i /∈ S, ri must be correct.
Thus we can conclude that

∆(r, c) ≤ |S| ≤ γ

β − d
2

n

By this claim, we can use a decoder of C on r to retrieve the original string.

2

3 Alon-Edmonds-Luby(AEL) Codes

AEL codes are similar in spirit to concatenation codes, combined with ideas from ABNNR codes.
We first begin with a small code C0 ⊆ Σd

0, with |C0| = |Σ| and encoding function Enc: Σ → C0.
Next, take a λ-absolute spectral bipartite expander.

AEL codes allow us to get ϵ-close to the singleton bound with alphabet size O(1).

We begin with a small code C0:

1. C0 ⊆ Σd
0, with |C0| = |Σ|.

2. Encoding function Enc: Σ → C0.

3. Dimension k = (1− ϵ)n.

4. Rate R0.

5. Distance δ.

And a Reed-Solomon code:

1. C ⊆ Σn, with |Σ| = n.

2. Rate 1− ϵ.

3. Distance ϵ.

And a d-regular λ-absolute bipartite expander G.

We end with a code C̃:

1. C̃ ⊆ Σ̃n, with Σ̃ = Σd
0.

2. New encoding function from the reed solomon code to the new code Enc: Σn → C̃. If c̃ =
c1c2...cn, ci ∈ Σ, then Enc(c̃) = c̃1c̃2...c̃n, where c̃i = {(Enc(cj))k, i is the k-th neighbour of j in G}
for ci ∈ Σ.

3. Rate R0 − ϵ.

4. Distance δ − ϵ.

We construct the code as follows: For each element c = c1c2...cn ∈ C in the Reed-Solomon code,
we let the element c′ = Enc(c) be an element in the new code C̃.

3

𝑑 − 𝑟𝑒𝑔𝑢𝑙𝑎𝑟 𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑟 𝐺

𝐸𝑛𝑐(𝑐2)

𝐸𝑛𝑐(𝑐3)

𝐸𝑛𝑐(𝑐𝑛)

𝑐1 ∈ Σ0
𝑑

𝑐2

𝑐3

෦𝑐𝑛

… …

𝑐1 = 𝐸𝑛𝑐 𝑐1 1𝐸𝑛𝑐 𝑐3 1…𝐸𝑛𝑐(𝑐1) ∈ Σ0
𝑑

𝑐2 = 𝐸𝑛𝑐 𝑐1 2𝐸𝑛𝑐 𝑐2 1…

Rate of C̃: Let the rate of the new code be R. We have:

(|Σ̃|Rn) = |C̃| = |Σ|(1−ϵ)n

(|Σ0|d)Rn = |Σ|(1−ϵ)n

We know that |Σ0|R0d = |Σ|, so we have:

|Σ0|Rd = |Σ|1−ϵ

=⇒ R = R0(1− ϵ)

Distance of C̃: Take codewords w̃1, w̃2 ∈ Σdn
0 , and let w1 and w2 be such that Enc(w1) = w̃1,

and Enc(w2) = w̃2. Let S be the indices where w1 and w2 differ, S = {i ∈ [n]|(w1)i ̸= (w2)i}, and
let T be the indices where w̃1 and w̃2 differ, T = {j ∈ [n]|(w̃1)j ̸= (w̃2)j}. Our objective is to show
that |T | is large. Since w1 and w2 are words from a Reed-Solomon code of distance ϵ, we have the
guarantee that |S| ≥ ϵn.

Let H be the set of i, j pairs such that (Enc(w1)i)j ̸= (Enc(w2)i)j . Notice that for any vertex in
S, we have that (w1)i ̸= (w2)i. Since Enc is an error correcting code of distance δ, we have that
Enc((w1)i) and Enc((w2)i) differ on at least δd coordinates. Hence H has at least δd edges incident
on every vertex of S.

4

We can now obtain a bound on the size of T :

e(S, T) ≥ δd|S|

δd|S| ≤ e(S, T) ≤ d

n
|S||T |+ λ

√
|S||T | by the expander mixing lemma.

=⇒ |T | ≥ nδ − n(
λ

d
)

√
|S||T |
|S|

|T | ≥ nδ − n
λ

d

√
δϵ−1 since S ≥ ϵn, T ≤ nδ

|T | ≥ nδ − nϵ pick λ ≤ dϵ1.5δ−0.5

This implies that the distance is at least δ − ϵ.

This produces a code that is ϵ-close to the singleton bound with alphabet size O(1).

This implies the following theorem:

Theorem 6. Let p ∈ [0, 12). Define Cp = 1 − H(p), where H(p) = −p log p − (1 − p) log (1− p)
is the entropy of p. If R < Cp, then there exists codes in {0, 1}n of length n, rate R, such that
given a corrupted codeward r prodoced by taking a true codeward, flipping each bit with probability
p independently, then:

Pr[the nearest codeward to r is the original codeward] = 1− exp(−n)

Conversely, if r > Cp, any procedure will be wrong with probability 1− exp(−n).

Furthermore, this code is explicit with a polynomial time decoding algorithm.

Theorem 7. There exists an explicit code and poly time decoding algorithm for the above.

5

