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1 Bipartite Expander Graph

First we introduce the definitions of Bipartite Expander Graph. We assume these are d-regular.

Definition 1. An («, 8) matriz expander bipartite graph is a bipartite graph (V = L+ R, E) such
that
VS C L, |S| <an = |I(S)| > 8|S|

Definition 2. A X spectral absolute bipartite expander graph is a bipartite graph (V = L+ R, E)
such that A is the second largest absolute value of singular values of the adjacency matriz.

Lemma 3. FExzpander Mixing Lemma for Bipartite Expander:

VS C LT C R, |e(S,T) %|S\|T| < \/ISTT]

2 ABNNR Codes

2.1 Encoding

The Alon-Brooks-Naor-Naor-Roth(ABNNR) codes can be constructed basing on a given code.
Given code C' C X" with dimension k and distance dn, we take an (a, 8) expander, in which there
are n vertices on each side. Let ¢ be a code word in C. For each vertex [; on the left side, we
associate it with ¢;, and we send its value to the right side via its edges. That is, for each vertex r;
on the right side, we associate it with tuple of (cp(ri)l,cp(ri)Q, ...cp(n.)d), where neighbours in I' are
in increasing order.

The operation above gives a code word ¢ € " where ¥ = 2% and thus we can obtain a code
C C ¥™ by performing it on every c in C.

Claim 4. If § < «, then C has distance at least 3n.

Proof. Consider ¢,¢, € C. Let S = {i € L s.t. (c1); # (c2);}, where c1, ¢y are the code words in
C' that from which we obtain ¢;,¢ by the ABNNR construction. Then [S| > dn. This implies
35" C S,|S’| = dn. By our assumption of § < «, using the expansion property we can obtain

IL(SH = BS").



By how we construct the ABNNR code, for all j € R s.t. j € I'(S), (¢1); # (¢2);. Thus we can see

Ay, é2) > [T(5)]
> |T(S")]
> plS'|
= Bén

2.2 Decoding
Given y € X" s.t. 3¢ € C, A(y,é) < yn for some v < <, we create € X" by majority:

b if (y;): = b for more than d/2 neighbours j € R of i
" ]JUNK otherwise

Claim 5. A(r,c) < ﬁj n

[NJfsY

Proof. Given T C R,|T| < yn, define S = {i € L, |T(S)NT| > ¢}. First we will bound the size of .

Since the graph is d-regular, we know that d|T| < 4|S|, which implies |S| < 2|T| < 2yn < an. By
the expander property, [I'(S)| > B|S|.

We know that e(S,T) > ¢|S| by the definition of S, which means e(S, R\ T) < 4|S|. Thus we have
L(S) < |7+ 4lS].

Combining these we have
B
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We let T' C R to be the set that indicates errors in y, then |T| < yn. Observe that S C L indicates
where errors may occur after the decoding algorithm, equivalently, for all ¢ ¢ S, r; must be correct.

Thus we can conclude that ~

ﬁf

n

A(r,c) < |S| <

[\]IsH

By this claim, we can use a decoder of C' on r to retrieve the original string.



3 Alon-Edmonds-Luby(AEL) Codes

AEL codes are similar in spirit to concatenation codes, combined with ideas from ABNNR codes.
We first begin with a small code Cy C %4, with |Cp| = |X| and encoding function Enc: ¥ — Co.
Next, take a A-absolute spectral bipartite expander.

AEL codes allow us to get e-close to the singleton bound with alphabet size O(1).

We begin with a small code Cjy:

1. Cp C X, with |Co| = |X].

2. Encoding function Enc: ¥ — Cj.
3. Dimension k = (1 — €)n.

4. Rate Ry.

5. Distance 6.
And a Reed-Solomon code:

1. C C X", with [X| =n.
2. Rate 1 —e.

3. Distance e.

And a d-regular A-absolute bipartite expander G.
We end with a code C:

1. C C ¥, with ¥ =g

2. New encoding function from the reed solomon code to the new code Enc: ¥ — C. If ¢ =
C1C2...Cn, ¢ € X, then Enc(¢) = ¢16...¢,, where ¢ = {(Enc(c;))g, ¢ is the k-th neighbour of j in G}
for ¢; € X.

3. Rate Ry — e.

4. Distance § — €.

We construct the code as follows: For each element ¢ = C1C2...Cn € C' in the Reed-Solomon code,
we let the element ¢/ = Enc(c) be an element in the new code C.



d —regular expander G

¢ = Enc(cy)1Enc(c3)q -

¢ = Enc(cy),Enc(cy)q o

Rate of C: Let the rate of the new code be R. We have:

(IZF) = |C| = [z
(|20|d)Rn _ ‘2|(176)n

We know that |Xo|f0? = |%|, so we have:

|EO|Rd — ‘E|1_E
— R = Ro(l — 6)

Distance of C: Take codewords iy, s € Eg", and let wy and wy be such that Enc(w;) = wy,
and Enc(ws) = wy. Let S be the indices where w; and wq differ, S = {i € [n]|(w1); # (w2);}, and
let T be the indices where w; and wy differ, T' = {j € [n]|(w1); # (w2);}. Our objective is to show
that |7’ is large. Since w; and wy are words from a Reed-Solomon code of distance €, we have the
guarantee that |S| > en.

Let H be the set of ¢, j pairs such that (Enc(w;);); # (Enc(wsz););. Notice that for any vertex in
S, we have that (w;); # (w2);. Since Enc is an error correcting code of distance d, we have that
Enc((w);) and Enc((wz);) differ on at least dd coordinates. Hence H has at least dd edges incident
on every vertex of S.



We can now obtain a bound on the size of T
e(S,T) > dd|S|
d
od|S| < e(S,T) < —|S||T| + M/|S||T| by the expander mixing lemma.
n

5)\/|SIIT\

d” [9]
|T| > nd — n%v de—1 since S > en, T < nd

|T| > nd —ne pick A\ < det?5705

= |T| > nd —n(

This implies that the distance is at least § — e.
This produces a code that is e-close to the singleton bound with alphabet size O(1).

This implies the following theorem:

Theorem 6. Let p € [0,3). Define C, = 1 — H(p), where H(p) = —plogp — (1 — p)log (1 — p)
is the entropy of p. If R < Cp, then there exists codes in {0,1}" of length n, rate R, such that
given a corrupted codeward r prodoced by taking a true codeward, flipping each bit with probability

p independently, then:
Pr| the nearest codeward to r is the original codeward] =1 — exp(—n)

Conversely, if r > C,, any procedure will be wrong with probability 1 — exp(—n).

Furthermore, this code is explicit with a polynomial time decoding algorithm.

Theorem 7. There exists an explicit code and poly time decoding algorithm for the above.



