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1 Spectral Expansion

Consider a d-regular graph G = (V, E) with n vertices. Let A be the adjacency matrix of G.
Consider the eigenvalues of A. Note that A is a symmetric matrix therefore all of the eigenvalues
are real. Recall that an eigenvalue \ is a constant such that A¥ = AZ. There are at most n
eigenvalues. We will call them A1, Ag, ..., A,. Since they are all real, we can order them.

Claim 1. A\ =d

Proof. First, show d is an eigenvalue. Note that for the vector of all 1’s, d is an eigenvalue because
the vth entry of AZis ), _, Zu.

Now, show that d is the max eigenvalue. If A¥ = AZ, the uth entry for AZ is the sum of all values
around it.
AF=\F = Aey = )y

u~v

If 2, = maxyey (Tw) = ALy = Yoy Tu < dTy. O
Since A is symmetric, 371, ¥, ..., Uy € R™ nonzero such that
1. All ¥y, ..., ¥, are orthogonal

2. AU = \U;

Lemma 2. Ao =d if and only if G is disconnected.

Proof. First, assume G is disconnected. Then v1 = lcomponent 1 @a0d v2 = lcomponent 2. Both are
eigenvectors of d.

Now, assume A9 = d. Consider 07 = T and Uy =1 T both eigenvectors of d.

If z : V — R is an eigenvector of d, then the vth component of Az equals > . x, = dz,.

Therefore we have

u~v

1
Ty = g uzN;) T, = avg x, neighbours of V

= x is constant on connected components.



So ¥ is not all constant, therefore G is disconnected.

Definition 3. A d-regular graph is a \-spectral expander if Ao < A.

An interesting consideration is A < (0.9)d. Note that A can go as small as O(/d).
Lemma 4. 1. \, > —d

2. \p = —d if and only if G is bipartite.

Proof. 1. A\pxyy = Zqu Ty Ty = ﬁ EUNU Lu-

2. The proof of number 2 can be found online at various sources . In general, the proof goes by
comparing absolute value of the eigenvector in a certain coordinate with the absolute values of the
eigenvector at all the coordinates of the neighbors.

O]

Definition 5. A d-regular graph is a A-absolute spectral expander if A2, |[Ap| < A.

Again, an interesting consideration is A < (0.9)d. Note that A can go as small as O(V/d).

Lemma 6. Assume G is a A-absolute spectral expander. Let S, T CV and

e(S, T') = number of edges between S, T
= number of (s, t) such that s € S, t € T, and s,t is an edge.

Then, we have that

S||T|d
e(s. ) - BT < 55T
Proof. Consider 1g, 1. Then e(S, T) = 11.Alg We can write
15 = Zaﬂ}i
i=1
lp =Y B
i=1

"https://math.stackexchange.com/questions /3636376 /cigenvalues-of-k-regular-bipartite-graph-adjacency-
matrix/3636551#3636551




When Alg =), o Av; = ) . a;\jv;. We have

(1p, Alg) = Zﬁjv], ZO‘Z)‘ v;)
= Zazﬂz‘ i
=1 +Bld+zazﬁz i

‘S‘ ‘T’ +Z 7,67, 7

Note that since
> a? =13
i

ai = (1s,v5) = a; = ’\/TL

we have that

Z a;Bidi| < A Z | i
i—2 i—2

(2] (2)
<‘S, 1] )(!Tl \Tn! )

at70 < A\/W\/<1 - ‘i) (1 B m)
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2 Expander Graphs (Second Half)

Definition 7. Let Ay > --- > X\, be the eigenvalues of the adjacency matriz of a d-reqular graph G
with n vertices and d edges. We call G a A-spectral expander if A > Ag.

Comment. \ can go as small as O(V/d).

Theorem 8. In a d-reqular graph with n vertices, the least eigenvalue A, of the symmetric matriz
satisfies A, > —d. The equality A\, = —d holds if and only if G is bipartite.



Consider ApXy = Y ,op Xu Where x : V' — C is the map from the vertex set to the complex
numbers. The idea of the proof is to take 1 on one component and —1 on the other.

Definition 9. An absolute \-spectral expander is a d-regular graph such that both o, |\, < .

Comment. An interesting regime is A = 0.9d.

Lemma 10 (Expander Mixing Lemma). Given subsets S and T of the vertex set V' not necessarily
disjoint, denote the number of edges between S and T by

e(S,T) = #{(s,t) : s € S,t € T, st an edge}

In a random graph we have

d
e(8,T) = —IS|ITl| < AVIS|IT]

Proof. Let g be the vector indicator of S and let A be the adjacency matrix of the graph GG. Then
we have e(S,T) = J%;AJA‘;— Put g = > a;v; and Wp = > Bv; for orthogonal unit eigenvectors
{vi} of the adjacency matrix. On the one hand we have A¥g = > a;\;v; and on the other we can

compute |e(S,T) = (¥r, A¥g) = (3 Bivi, Y- aidivi) = X aifidi = L S||T| + D cifis

=2
——

€

Now Y a? = ||Ks||? where o; = (Fg,v;) so a; = |S|/y/n. Analogous equation holds for ;. So for
the error term we have, by Cauchy-Schwartz

|S|2 1/2 |T|2 1/2
S—E:m&A<A§:mﬁA<AQ$ BEY (m-E5) T < v

This suffices for the proof. O

3 Edge Expansion
Theorem 11. For any subset S of the set of vertices with |S| < §

(5.5 (152 1

Proof. By expander mixing lemma
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If | S| < an then > (1 — a) and we have

e(S,5% > (1 —a)(d—N)|S]

We have proved a generalization of this theorem, which is the particular case with o = 1/2. ]

4 Vertex Expansion

For every subset S of the vertices with |S| < an

|| A¥s||?
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|| AW g3

DMLY
d|S|
d2|5|2
T AR )
_ 15

EINES
n+d2

A2\ !

5 Error Correction Code Based on Spectral Expanders and Tan-
ner Codes

v

Consider a d-regular graph G, we label the edges with zeros and ones (n vertices and m = (n—d)/2
edges). (Ye)ecr € FY'. Take code Cy C F4 distance §od. Ask that for all v € V' (ye)vee € Co.

C ={y € F3 : y = (Ye)eck such that for all v € V' (ye)yee € Co}

Can there be a code word with very few 1s? Let y € C be a nonzero code. Let F' C E be the set
of edges with y = 1. Let S C V be the set of vertices touching some edge of F'. For each v € S we
find v touches > dpd edges of F.

Claim. [F|>Q(82) -m
Proof. Since e(S,S) > 0pd|S| and

|S]%d
n

‘e(S, S) —

< AlS]

then



fod|S| < e(S,5) < |8 ('S'd ; A)

n

|Sld

n

A
> _Z
|S|_n<50 d)

ddy
2
The conclusion follows in the limit as d — oo.

dod < + A

d A
S| = 583 = 560)

F|>
F| 2 .



