Lecture 8: Absolute Spectral Expansion and Tanner Expander Codes

Topics in Error-Correcting Codes (Fall 2022)
University of Toronto
Swastik Kopparty
Scribe: Quinn Fisher and Xue J.

1 Spectral Expansion

Consider a d-regular graph $G=(V, E)$ with n vertices. Let A be the adjacency matrix of G. Consider the eigenvalues of A. Note that A is a symmetric matrix therefore all of the eigenvalues are real. Recall that an eigenvalue λ is a constant such that $A \vec{x}=\lambda \vec{x}$. There are at most n eigenvalues. We will call them $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. Since they are all real, we can order them.

Claim 1. $\lambda_{1}=d$

Proof. First, show d is an eigenvalue. Note that for the vector of all 1's, d is an eigenvalue because the v th entry of $A \vec{x}$ is $\sum_{u \sim v} x_{u}$.

Now, show that d is the max eigenvalue. If $A \vec{x}=\lambda \vec{x}$, the u th entry for $A \vec{x}$ is the sum of all values around it.

$$
A \vec{x}=\lambda \vec{x} \Rightarrow \lambda x_{u}=\sum_{u \sim v} x_{u}
$$

If $x_{u}=\max _{w \in V}\left(x_{w}\right) \Rightarrow \lambda x_{u}=\sum_{\text {max }} x_{u} \leq d x_{u}$.
Since A is symmetric, $\exists \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n} \in \mathbb{R}^{n}$ nonzero such that

1. All $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are orthogonal
2. $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$

Lemma 2. $\lambda_{2}=d$ if and only if G is disconnected.
Proof. First, assume G is disconnected. Then $v_{1}=1_{\text {component } 1}$ and $v_{2}=1_{\text {component 2 }}$. Both are eigenvectors of d.

Now, assume $\lambda_{2}=d$. Consider $\vec{v}_{1}=\overrightarrow{1}$ and $\vec{v}_{2}=\perp \overrightarrow{1}$ both eigenvectors of d.
If $x: V \rightarrow \mathbb{R}$ is an eigenvector of d, then the v th component of $A x$ equals $\sum_{u \sim v} x_{u}=d x_{u}$. Therefore we have

$$
\begin{aligned}
x_{u}=\frac{1}{d} \sum_{u \sim v} x_{u} & \Rightarrow \text { avg } x_{n} \text { neighbours of } V \\
& \Rightarrow x \text { is constant on connected components. }
\end{aligned}
$$

So \vec{v}_{2} is not all constant, therefore G is disconnected.

Definition 3. A d-regular graph is a λ-spectral expander if $\lambda_{2} \leq \lambda$.
An interesting consideration is $\lambda \leq(0.9) d$. Note that λ can go as small as $O(\sqrt{d})$.
Lemma 4. 1. $\lambda_{n} \geq-d$
2. $\lambda_{n}=-d$ if and only if G is bipartite.

Proof. 1. $\lambda_{n} x_{v}=\sum_{u \sim v} x_{u} . x_{v}=\frac{1}{\lambda_{n}} \sum_{u \sim v} x_{u}$.
2. The proof of number 2 can be found online at various sources ${ }^{1}$. In general, the proof goes by comparing absolute value of the eigenvector in a certain coordinate with the absolute values of the eigenvector at all the coordinates of the neighbors.

Definition 5. A d-regular graph is a λ-absolute spectral expander if $\lambda_{2},\left|\lambda_{n}\right| \leq \lambda$.
Again, an interesting consideration is $\lambda \leq(0.9) d$. Note that λ can go as small as $O(\sqrt{d})$.
Lemma 6. Assume G is a λ-absolute spectral expander. Let $S, T \subseteq V$ and

$$
\begin{aligned}
e(S, T) & =\text { number of edges between } S, T \\
& =\text { number of }(s, t) \text { such that } s \in S, t \in T, \text { and } s, t \text { is an edge. }
\end{aligned}
$$

Then, we have that

$$
\left|e(S, T)-\frac{|S||T| d}{n}\right| \leq \lambda \sqrt{|S||T|}
$$

Proof. Consider $1_{S}, 1_{T}$. Then $e(S, T)=1_{T}^{\top} A 1_{S}$ We can write

$$
\begin{aligned}
& 1_{S}=\sum_{i=1}^{n} \alpha_{i} v_{i} \\
& 1_{T}=\sum_{i=1}^{n} \beta_{i} v_{i}
\end{aligned}
$$

[^0]When $A 1_{S}=\sum_{i} \alpha_{i} A v_{i}=\sum_{i} \alpha_{i} \lambda_{i} v_{i}$. We have

$$
\begin{aligned}
\left\langle 1_{T}, A 1_{S}\right\rangle & =\left\langle\sum_{j} \beta_{j} v_{j}, \sum_{i} \alpha_{i} \lambda_{i} v_{i}\right\rangle \\
& =\sum_{i} \alpha_{i} \beta_{i} \lambda_{i} \\
& =\alpha_{1}+\beta_{1} d+\sum_{i=2}^{n} \alpha_{i} \beta_{i} \lambda_{i} \\
& =\frac{|S|}{\sqrt{n}} \frac{|T|}{\sqrt{n}}+\sum_{i=2}^{n} \alpha_{i} \beta_{i} \lambda_{i}
\end{aligned}
$$

Note that since

$$
\begin{gathered}
\sum_{i} \alpha_{i}^{2}=\left\|1_{S}\right\|_{2}^{2} \\
a_{i}=\left\langle 1_{s}, v_{i}\right\rangle \Rightarrow a_{i}=\frac{|S|}{\sqrt{n}}
\end{gathered}
$$

we have that

$$
\begin{aligned}
\left|\sum_{i=2}^{n} \alpha_{i} \beta_{i} \lambda_{i}\right| & \leq \lambda \sum_{i=2}^{n}\left|\alpha_{i} \beta_{i}\right| \\
& \leq \lambda\left(\sum_{i} \alpha_{i}^{2}\right)^{\frac{1}{2}}\left(\sum_{i} \beta_{i}^{2}\right)^{\frac{1}{2}} \\
& \leq \lambda\left(|S|-\frac{|S|^{2}}{n}\right)\left(|T|-\frac{|T|^{2}}{n}\right) \\
& a t 70 \leq \lambda \sqrt{|S|-|T|} \sqrt{\left(1-\frac{|S|}{n}\right)\left(1-\frac{|T|}{n}\right)}
\end{aligned}
$$

2 Expander Graphs (Second Half)

Definition 7. Let $\lambda_{1} \geq \cdots \geq \lambda_{n}$ be the eigenvalues of the adjacency matrix of a d-regular graph G with n vertices and d edges. We call G a λ-spectral expander if $\lambda \geq \lambda_{2}$.

Comment. $\quad \lambda$ can go as small as $\mathcal{O}(\sqrt{d})$.
Theorem 8. In a d-regular graph with n vertices, the least eigenvalue λ_{n} of the symmetric matrix satisfies $\lambda_{n} \geq-d$. The equality $\lambda_{n}=-d$ holds if and only if G is bipartite.

Consider $\lambda_{n} \chi_{v}=\sum_{u \sim v} \chi_{u}$ where $\chi: V \longrightarrow \mathbb{C}$ is the map from the vertex set to the complex numbers. The idea of the proof is to take 1 on one component and -1 on the other.

Definition 9. An absolute λ-spectral expander is a d-regular graph such that both $\lambda_{2},\left|\lambda_{n}\right| \leq \lambda$.
Comment. An interesting regime is $\lambda=0.9 d$.
Lemma 10 (Expander Mixing Lemma). Given subsets S and T of the vertex set V not necessarily disjoint, denote the number of edges between S and T by

$$
e(S, T)=\#\{(s, t): s \in S, t \in T, \text { st an edge }\}
$$

In a random graph we have

$$
\left|e(S, T)-\frac{d}{n}\right| S||T|| \leq \lambda \sqrt{|S||T|}
$$

Proof. Let \Vdash_{S} be the vector indicator of S and let A be the adjacency matrix of the graph G. Then we have $e(S, T)=\nVdash_{T}^{\top} A \nVdash_{S}^{\top}$. Put $\not_{S}=\sum \alpha_{i} v_{i}$ and $\not_{T}=\sum \beta_{i} v_{i}$ for orthogonal unit eigenvectors $\left\{v_{i}\right\}$ of the adjacency matrix. On the one hand we have $A \nVdash_{S}=\sum \alpha_{i} \lambda_{i} v_{i}$ and on the other we can compute $[e(S, T)=\left\langle\nVdash T, A \nVdash_{S}\right\rangle=\left\langle\sum \beta_{i} v_{i}, \sum \alpha_{i} \lambda_{i} v_{i}\right\rangle=\sum \alpha_{i} \beta_{i} \lambda_{i}=\frac{d}{n}|S||T|+\underbrace{\sum_{i=2}^{n} \alpha_{i} \beta_{i} \lambda_{i}}_{\varepsilon}]$

Now $\sum \alpha_{i}^{2}=\left\|\nVdash \Vdash_{S}\right\|^{2}$ where $\alpha_{i}=\left\langle\nVdash S, v_{i}\right\rangle$ so $\alpha_{i}=|S| / \sqrt{n}$. Analogous equation holds for β_{i}. So for the error term we have, by Cauchy-Schwartz

$$
\varepsilon=\sum_{i=2}^{n} \alpha_{i} \beta_{i} \lambda_{i} \leq \lambda \sum\left|\alpha_{i} \beta_{i}\right| \leq \lambda\left(|S|-\frac{|S|^{2}}{n}\right)^{1 / 2}\left(|T|-\frac{|T|^{2}}{n}\right)^{1 / 2} \leq \lambda \sqrt{|S||T|}
$$

This suffices for the proof.

3 Edge Expansion

Theorem 11. For any subset S of the set of vertices with $|S| \leq \frac{n}{2}$

$$
e\left(S, S^{c}\right) \geq\left(\frac{d-\lambda}{2}\right)|S|
$$

Proof. By expander mixing lemma

$$
\begin{aligned}
e\left(S, S^{c}\right) & \geq \frac{d}{n}|S|\left|S^{c}\right|-\lambda \sqrt{|S|\left|S^{c}\right|\left(1-\frac{|S|}{n}\right)\left(1-\frac{\left|S^{c}\right|}{n}\right)} \\
& =\frac{d}{n}|S|\left|S^{c}\right|-\frac{\lambda}{n}|S|\left|S^{c}\right| \\
& =\frac{n-|S|}{n} \cdot(d-\lambda)|S|
\end{aligned}
$$

If $|S| \leq \alpha n$ then $\frac{n-|S|}{n} \geq(1-\alpha)$ and we have

$$
e\left(S, S^{c}\right) \geq(1-\alpha)(d-\lambda)|S|
$$

We have proved a generalization of this theorem, which is the particular case with $\alpha=1 / 2$.

4 Vertex Expansion

For every subset S of the vertices with $|S| \leq \alpha n$

$$
\begin{aligned}
\left|\operatorname{supp}\left(A \nVdash_{S}\right)\right| & \geq \frac{\left\|A \nVdash_{S}\right\|_{1}^{2}}{\left\|A \nVdash_{S}\right\|_{2}^{2}} \\
& =\frac{\sum a_{i}^{2} \lambda_{i}^{2}}{d|S|} \\
& \geq \frac{d^{2}|S|^{2}}{\frac{d^{2}|S|^{2}}{n}+\lambda^{2}|S|} \\
& =\frac{|S|}{\frac{|S|}{n}+\frac{\lambda^{2}}{d^{2}}} \\
& \geq\left(\alpha+\frac{\lambda^{2}}{d^{2}}\right)^{-1}|S|
\end{aligned}
$$

5 Error Correction Code Based on Spectral Expanders and Tanner Codes

Consider a d-regular graph G, we label the edges with zeros and ones (n vertices and $m=(n-d) / 2$ edges). $\left(y_{e}\right)_{e \in E} \in \mathbb{F}_{2}^{m}$. Take code $C_{0} \subset \mathbb{F}_{2}^{d}$ distance $\delta_{0} d$. Ask that for all $v \in V\left(y_{e}\right)_{v \in e} \in C_{0}$.

$$
C=\left\{y \in \mathbb{F}_{2}^{n}: y=\left(y_{e}\right)_{e \in E} \text { such that for all } v \in V\left(y_{e}\right)_{v \in e} \in C_{0}\right\}
$$

Can there be a code word with very few 1 s? Let $y \in C$ be a nonzero code. Let $F \subset E$ be the set of edges with $y=1$. Let $S \subset V$ be the set of vertices touching some edge of F. For each $v \in S$ we find v touches $\geq \delta_{0} d$ edges of F.

Claim. $|F| \geq \Omega\left(\delta_{0}^{2}\right) \cdot m$

Proof. Since $e(S, S) \geq \delta_{0} d|S|$ and

$$
\left|e(S, S)-\frac{|S|^{2} d}{n}\right| \leq \lambda|S|
$$

then

$$
\begin{gathered}
\delta_{0} d|S| \leq e(S, S) \leq|S|\left(\frac{|S| d}{n}+\lambda\right) \\
\delta_{0} d \leq \frac{|S| d}{n}+\lambda \\
|S| \geq n\left(\delta_{0}-\frac{\lambda}{d}\right) \\
|F| \geq \frac{d \delta_{0}}{2}|S|=\frac{d n}{2}\left(\delta_{0}^{2}-\frac{\lambda}{d} \delta_{0}\right)
\end{gathered}
$$

The conclusion follows in the limit as $d \rightarrow \infty$.

[^0]: ${ }^{1}$ https://math.stackexchange.com/questions/3636376/eigenvalues-of-k-regular-bipartite-graph-adjacencymatrix/3636551\#3636551

