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1 Spectral Expansion

Consider a d-regular graph G = (V, E) with n vertices. Let A be the adjacency matrix of G.
Consider the eigenvalues of A. Note that A is a symmetric matrix therefore all of the eigenvalues
are real. Recall that an eigenvalue λ is a constant such that Ax⃗ = λx⃗. There are at most n
eigenvalues. We will call them λ1, λ2, . . . , λn. Since they are all real, we can order them.

Claim 1. λ1 = d

Proof. First, show d is an eigenvalue. Note that for the vector of all 1’s, d is an eigenvalue because
the vth entry of Ax⃗ is

∑
u∼v xu.

Now, show that d is the max eigenvalue. If Ax⃗ = λx⃗, the uth entry for Ax⃗ is the sum of all values
around it.

Ax⃗ = λx⃗ ⇒ λxu =
∑
u∼v

xu

If xu = maxw∈V (xw) ⇒ λxu =
∑

max xu ≤ dxu.

Since A is symmetric, ∃v⃗1, v⃗2, . . . , v⃗n ∈ Rn nonzero such that

1. All v⃗1, . . . , v⃗n are orthogonal

2. Av⃗i = λiv⃗i

Lemma 2. λ2 = d if and only if G is disconnected.

Proof. First, assume G is disconnected. Then v1 = 1component 1 and v2 = 1component 2. Both are
eigenvectors of d.

Now, assume λ2 = d. Consider v⃗1 = 1⃗ and v⃗2 =⊥ 1⃗ both eigenvectors of d.

If x : V → R is an eigenvector of d, then the vth component of Ax equals
∑

u∼v xu = dxu.
Therefore we have

xu =
1

d

∑
u∼v

xu ⇒ avg xn neighbours of V

⇒ x is constant on connected components.
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So v⃗2 is not all constant, therefore G is disconnected.

Definition 3. A d-regular graph is a λ-spectral expander if λ2 ≤ λ.

An interesting consideration is λ ≤ (0.9)d. Note that λ can go as small as O(
√
d).

Lemma 4. 1. λn ≥ −d

2. λn = −d if and only if G is bipartite.

Proof. 1. λnxv =
∑

u∼v xu. xv = 1
λn

∑
u∼v xu.

2. The proof of number 2 can be found online at various sources 1. In general, the proof goes by
comparing absolute value of the eigenvector in a certain coordinate with the absolute values of the
eigenvector at all the coordinates of the neighbors.

Definition 5. A d-regular graph is a λ-absolute spectral expander if λ2, |λn| ≤ λ.

Again, an interesting consideration is λ ≤ (0.9)d. Note that λ can go as small as O(
√
d).

Lemma 6. Assume G is a λ-absolute spectral expander. Let S, T ⊆ V and

e(S, T ) = number of edges between S, T

= number of (s, t) such that s ∈ S, t ∈ T, and s, t is an edge.

Then, we have that ∣∣∣∣e(S, T )− |S||T |d
n

∣∣∣∣ ≤ λ
√
|S||T |

Proof. Consider 1S , 1T . Then e(S, T ) = 1⊺TA1S We can write

1S =
n∑

i=1

αivi

1T =
n∑

i=1

βivi

1https://math.stackexchange.com/questions/3636376/eigenvalues-of-k-regular-bipartite-graph-adjacency-
matrix/3636551#3636551
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When A1S =
∑

i αiAvi =
∑

i αiλivi. We have

⟨1T , A1S⟩ = ⟨
∑
j

βjvj ,
∑
i

αiλivi⟩

=
∑
i

αiβiλi

= α1 + β1d+

n∑
i=2

αiβiλi

=
|S|√
n

|T |√
n
+

n∑
i=2

αiβiλi

Note that since ∑
i

α2
i = ||1S ||22

ai = ⟨1s, vi⟩ ⇒ ai =
|S|√
n

we have that ∣∣∣∣∣
n∑

i=2

αiβiλi

∣∣∣∣∣ ≤ λ
n∑

i=2

|αiβi|

≤ λ

(∑
i

α2
i

) 1
2
(∑

i

β2
i

) 1
2

≤ λ

(
|S| − |S|2

n

)(
|T | − |T |2

n

)
at70 ≤ λ

√
|S| − |T |

√(
1− |S|

n

)(
1− |T |

n

)

2 Expander Graphs (Second Half)

Definition 7. Let λ1 ≥ · · · ≥ λn be the eigenvalues of the adjacency matrix of a d-regular graph G
with n vertices and d edges. We call G a λ-spectral expander if λ ≥ λ2.

Comment. λ can go as small as O(
√
d).

Theorem 8. In a d-regular graph with n vertices, the least eigenvalue λn of the symmetric matrix
satisfies λn ≥ −d. The equality λn = −d holds if and only if G is bipartite.
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Consider λnχv =
∑

u∼v χu where χ : V −→ C is the map from the vertex set to the complex
numbers. The idea of the proof is to take 1 on one component and −1 on the other.

Definition 9. An absolute λ-spectral expander is a d-regular graph such that both λ2, |λn| ≤ λ.

Comment. An interesting regime is λ = 0.9d.

Lemma 10 (Expander Mixing Lemma). Given subsets S and T of the vertex set V not necessarily
disjoint, denote the number of edges between S and T by

e(S, T ) = #{(s, t) : s ∈ S, t ∈ T, st an edge}

In a random graph we have ∣∣∣∣e(S, T )− d

n
|S||T |

∣∣∣∣ ≤ λ
√
|S||T |

Proof. Let ⊮S be the vector indicator of S and let A be the adjacency matrix of the graph G. Then
we have e(S, T ) = ⊮⊤

TA⊮⊤
S . Put ⊮S =

∑
αivi and ⊮T =

∑
βivi for orthogonal unit eigenvectors

{vi} of the adjacency matrix. On the one hand we have A⊮S =
∑

αiλivi and on the other we can

compute

e(S, T ) = ⟨⊮T , A⊮S⟩ = ⟨
∑

βivi,
∑

αiλivi⟩ =
∑

αiβiλi =
d
n |S||T |+

n∑
i=2

αiβiλi︸ ︷︷ ︸
ε


Now

∑
α2
i = ||⊮S ||2 where αi = ⟨⊮S , vi⟩ so αi = |S|/

√
n. Analogous equation holds for βi. So for

the error term we have, by Cauchy-Schwartz

ε =
n∑

i=2

αiβiλi ≤ λ
∑

|αiβi| ≤ λ

(
|S| − |S|2

n

)1/2(
|T | − |T |2

n

)1/2

≤ λ
√
|S||T |

This suffices for the proof.

3 Edge Expansion

Theorem 11. For any subset S of the set of vertices with |S| ≤ n
2

e(S, Sc) ≥
(
d− λ

2

)
|S|

Proof. By expander mixing lemma

e(S, Sc) ≥ d

n
|S||Sc| − λ

√
|S||Sc|

(
1− |S|

n

)(
1− |Sc|

n

)
=

d

n
|S||Sc| − λ

n
|S||Sc|

=
n− |S|

n
· (d− λ)|S|
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If |S| ≤ αn then n−|S|
n ≥ (1− α) and we have

e(S, Sc) ≥ (1− α)(d− λ)|S|

We have proved a generalization of this theorem, which is the particular case with α = 1/2.

4 Vertex Expansion

For every subset S of the vertices with |S| ≤ αn

|supp(A⊮S)| ≥
||A⊮S ||21
||A⊮S ||22

=

∑
a2iλ

2
i

d|S|

≥ d2|S|2
d2|S|2

n + λ2|S|

=
|S|

|S|
n + λ2

d2

≥
(
α+

λ2

d2

)−1

|S|

5 Error Correction Code Based on Spectral Expanders and Tan-
ner Codes

Consider a d-regular graph G, we label the edges with zeros and ones (n vertices and m = (n−d)/2
edges). (ye)e∈E ∈ Fm

2 . Take code C0 ⊂ Fd
2 distance δ0d. Ask that for all v ∈ V (ye)v∈e ∈ C0.

C = {y ∈ Fn
2 : y = (ye)e∈E such that for all v ∈ V (ye)v∈e ∈ C0}

Can there be a code word with very few 1s? Let y ∈ C be a nonzero code. Let F ⊂ E be the set
of edges with y = 1. Let S ⊂ V be the set of vertices touching some edge of F . For each v ∈ S we
find v touches ≥ δ0d edges of F .

Claim. |F | ≥ Ω(δ20) ·m

Proof. Since e(S, S) ≥ δ0d|S| and ∣∣∣∣e(S, S)− |S|2d
n

∣∣∣∣ ≤ λ|S|

then
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δ0d|S| ≤ e(S, S) ≤ |S|
(
|S|d
n

+ λ

)
δ0d ≤ |S|d

n
+ λ

|S| ≥ n

(
δ0 −

λ

d

)
|F | ≥ dδ0

2
|S| = dn

2
(δ20 −

λ

d
δ0)

The conclusion follows in the limit as d → ∞.

6


