
Lecture 6: Fourier Analysis and The Rate/Distance Trade-off for
Distance Near 1/2

Topics in Error-Correcting Codes (Fall 2022)
University of Toronto

Swastik Kopparty
Scribes: Brinda Venkataramani and Harry Sha

A quick recap of some facts:

Fact 1. R ≥ 1−H(δ) (GV bound), where H is the BCE function.

Fact 2. R ≤ 1−H(J(δ)) (EB bound), where J is the Johnson function J(δ) = 1−
√
1−2δ
2 .

Fact 3. There exist explicit codes with rate vs. δ being what comes out of concatenation of RS
outer codes with brute-force search inner-codes. (This relies on GV bound since this is the best
known lower-bound.)

We will now focus on the case where δ = 1−ϵ
2 .

Note: In our discussion, we are first letting n→ ∞ and then only δ → 1−ϵ
2 .

We know there exist codes with rate Ω(ϵ2). For all codes, rate is at most O(ϵ). This is quite a big
gap. In this lecture we will see that the first bound is nearer the truth. This was first proved by
McEliece, Rodemich, Rumsey and Welch in the 70s through their “Linear Programming bound”.
We will see a simple proof (that only works for linear codes) of this result for the δ close to 1/2
asymptotic. This proof is a translation to Fourier analysis of an eigenvalue-based proof by Alon
and an improvement by Schectman and Shraibman.

Worth noting: Explicit codes in this regime. We also know there exist explicit codes with
rate at least Ω(ϵ3). This comes from concatenation. The main question is how to choose distances
d1, d2, s.t. δ = 1−ϵ

2 . The idea is that the inner brute-force code being binary forces it to have

distances around 1
2 , i.e. not too far below. So we consider δin = 1−O(ϵ)

2 and thus we can take
Rin = O(ϵ2) and for the outer code δout = 1−O(ϵ) so R = Ω(ϵ3).

Currently, in the field, it is believed that this gap between codes which can exist and those which
are explicitly constructible should be arbitrarily small.

1 Fourier analysis on F2

We consider the space of all functions

{f : Fk
2 → R}.

This is a 2k-dimensional vector space. A natural basis is:

1

δx(y) =

{
1 y = x

0 otherwise
.

i.e. 2k indicator functions for each x ∈ Fk
2.

However, this is not the only basis. We can introduce the Fourier basis:

Consider the functions ψy(x) = −1⟨x,y⟩, where the inner product is the F2 inner product, and
y ∈ Fk

2. Note this is indeed a well-defined map into R since the i.p. is modulo 2.

Lemma 4. The space of ψy is an orthogonal space.

Proof.

⟨ψy, ψy′⟩ =
∑
x∈Fk

2

ψy(x)ψy′(x)

=
∑
x

−1⟨x,y⟩ − 1⟨x,y
′⟩

=
∑
x

−1⟨x,y+y′⟩

=
∑
x

ψy+y′(x)

=
∑
x

−1

∑
1≤i≤k

xizi
(zi = yi + y′i)

=
∏

(1 + (−1)zi)

This is just the indicator function for zi = 0 for some i. i.e.

∑
x

ψy+y′(x) =

{
2k y + y′ = 0

0 otherwise

Fact 5. For every nice finite abelian group there is such a nice Fourier basis respecting the group
operation.

This Fourier basis lets us write f : Fk
2 → R as

f =
∑
y

f̂(y)ψy,

with
f̂(y) = ⟨f, ψy⟩,

with scaling 1
2k
.

f̂ is itself a function from Fk
2 → R called the Fourier Transform (FT) of f .

2

Fact 6 (Parseval’s identity). ⟨f, g⟩ = ⟨f̂ , ĝ⟩ by orthogonality of ψy for different y with the appro-
priate scaling.

This FT will be useful for studying codes in F2
n. Notice we could have defined the FT directly on

Fn
2 but it will be cleaner this way since the original message space is Fk

2.

2 Bounding the rate

Let C be a linear code in Fn
2 . The goal is to express the distance in terms of FTs. Let

G =


...

... · · ·
...

v1 v2
. . . vn

...
... · · ·

...

 ,

be a generator matrix for C with all vis distinct. We then consider

fi =

{
1
n x = vi

0 otherwise

We will start by studying f̂i. We have:

f̂i(y) =
∑
x

fi(x)ψy(x)

=
1

n

∑
ψy(vi)

=
1

n

∑
(−1)⟨vi,y⟩

We can view this result as follows:

Consider the set of all x so ⟨x, y⟩ = 0. This is a subspace of Fk
2. Also, we can consider the orthogonal

complement of x so the i.p. is 1. In this view the final term above is a distribution of how the vi
are distributed among these subspaces.

Recall C is a code with distance δ. Consider yG a codeword. Then to pull out the coordinates
of yG w.r.t. G we take the i.p. ⟨yG, vi⟩. Notice that yG has at least δ 1’s since weight measures
distance of a code. Also, δ = 1−ϵ

2 . So at most 1− 2δ ≤ ϵ 1’s. We will use this fact to show that n
is big relative to k.

i.e. The goal is to upper bound the rate in terms of distance where the distance δ = 1−ϵ
2 is close to

1/2. We want R ≤ ϵ2, equivalently, n ≥ k/ϵ2.

Definition 7. A code has small bias if distance is bounded above and below.

3

For now, we will let C be such a code. We will also show that it is possible to remove this condition.

Under this, using similar reasoning, we can get that f̂i(y) ≥ −ϵ, so f̂i(y) ≤ |ϵ|. And also f̂(0) = 1.

The trick is to use Parseval’s identity.

The support of f is at least L1-norm. i.e.

supportf ≥ (
∑

|f(x)|)2∑
|f(x)|2

=
1∑

|f̂i(y)|2
.

(With the appropriate scaling.)

Lemma 8 (Linearity of ψy).
ψy(a+ b) = ψy(a)ψy(b)

So, we found

n = support(f) ≥ 2k

1 + ϵ2(2k − 1)
≈ 1

ϵ2
.

This is not exactly what we wanted - we’re missing a factor of k.

3 Improvement Using Convolution

To close the gap we will introduce a tool that allows us to shrink the Fourier coefficents.

Definition 9 (Convolution). Define the convolution of two functions f , g : Fk
2 → R, as

f ∗ g(z) =
∑

x,x′∈Fk
2 :x+x′=z

f(x)g(x′) =
∑
x∈Fk

2

f(x)g(z − x)

The main point is the following lemma.

Lemma 10. ˆf ∗ g(y) = f̂(y)ĝ(y)

Proof. Computing the Fourier coefficients of the convolution, we get

ˆf ∗ g(y) =
∑
z∈Fk

2

(f ∗ g)(z)ψy(z)

=
∑
z∈Fk

2

∑
x∈Fk

2

f(x)g(z − x)ψy(z)

=
∑
z∈Fk

2

∑
x∈Fk

2

f(x)g(z − x)ψy(x)ψy(z − x) (by lemma 8)

=

(∑
x

f(x)ψy(x)

)(∑
u

g(u)ψy(u)

)
= f̂(y)ĝ(y)

4

Take the function f = 1
n · Indicator{v1, ..., vn}. Consider h = f∗t = f ∗ f... ∗ f (t times). Since

f̂(0) = 1, and |f̂(x)| ≤ ϵ. By , ĥ(0) = 1, and |ĥ(z)| ≤ ϵt.

Lemma 11. If f, g are probability mass functions (pmf) corresponding to independent random
variables A and B, then f ∗g is the pmf for A+B. In particular,

∑
f ∗g(x) = 1, and support(f ·g) =

{a+ b : a ∈ support(f), b ∈ support(g)}

Proof. This is essentially by the definition of convolution. For f ∗ g(z), the expression is the sum
over all the possible ways for A+ B = z, the probability that that happens. The claim about the
support is true since it represents all the possible values attainable by A+B.

By the same argument as before, we get

support(h) ≥ (
∑

|h(x)|)2

(
∑
h(x)2)

=
1

1
2k

∑
ĥ(y)2

(by lemma 11)

≥ 2k

1 + ϵ2t(2k − 1)
≈ 1

ϵ2t

Then nt = support(f)t ≥ support(h), so again, we have n ≥ 1/ϵ2. To improve this, we will use a
better bound on support(f) in terms of support(h).

Observation 12. support(f∗t) ⊆ {
∑

x∈S x : S ⊆ support(f)}.

Note that this follows immediately from lemma 11. So instead of bounding support(f)t ≥ support(h),
we will bound

support(h) ≤
(
n

0

)
+

(
n

1

)
+ ...+

(
n

t

)
≤
(en
t

)t
· t ≤

(cn
t

)t
for some constant c just a tiny bit bigger than e. Thus, we have

t
(en
t

)t
≥ 2k

1 + ϵ2t(2k − 1)

=⇒ n ≥ 1

c

(
2k

1 + ϵ2t(2k − 1)

)1/t

t

Set t s.t. ϵ2t = 1/2k, (i.e. t = k
2 log(1/ϵ)). Plugging this back in, we get

5

n ≥ 1

c

(
2k

2

)1/t

t

≥ Ω(2k/tt)

= Ω

(
k

ϵ2 log(1/ϵ)

)
,

which is what we wanted (up to the additional log(1/ϵ))!

4 Removing the bias assumption

We had f̂(y) ≤ ϵ for all y. I.e. f̂(y) ∈ [−1, ϵ]. In the previous part, we introduced the additional
assumption that f̂(y) ≥ −ϵ. We will address this here.

We have f∗3 ≥ 0, (since f was a probability measure).

0 ≤ f∗3(0) =
1

2k

∑
y

(ˆf∗3)(y)ψy(0) =
1

2k

∑
y

(ˆf∗3)(y)

Where we used the fact that ψy(0) = 1 for all y. Thus, we have
∑

y
ˆf∗3(y) ≥ 0. Additionally, by

lemma 10, we have
∑

y f̂(y)
3 ≥ 0. We will use this fact to show that

A =
∑

y:f̂(y)<−ϵ

f̂(y)2

is small. We have

0 ≤
∑
y

f̂(y)3

=
∑

y:f̂(y)<−ϵ

f̂(y)3 + 1 +
∑

y:|f̂(y)|≤ϵ

f̂(y)3

≤ (−ϵ)
∑
y

f̂(y)2 + 1 +
∑

y:|f̂(y)|≤ϵ

f̂(y)3

≤ −ϵA+ 1 + ϵ3(2k − 1)

So A ≤ 1+ϵ3(2k−1)
ϵ = 1

ϵ + ϵ2(2k − 1).

Applying this to h, we get ∑
y

ĥ(y)2 = 1 +A+
∑

y:|ĥ(y)|≤ϵt

ĥ(y)2

= 1 +
1

ϵt
+ 2ϵ2t(2k − 1)

6

Plugging this back into the analysis with a different choice in t allows us to problem the same
bound within a constant factor.

7

