
Lecture 4: BCH Codes, Code Concatenation

Topics in Error-Correcting Codes (Fall 2022)
University of Toronto

Swastik Kopparty
Scribe: Anatoly Zavyalov and Gal Gross

1 BCH Codes

We first focus on BCH codes, which meet the volume-packing (Hamming) bound with a constant
distance d and |Σ| = 2 as n→ ∞.

Throughout, we let n = 2t for some positive integer t, and fix |Σ| = 2. We consider F2t =
{α1, . . . αn}, where F2t denotes the field consisting of 2t elements. We will also consider Ft

2, which
denotes the vector space over F2 of dimension t.

Fact 0. There exists an F2-linear bijection ψ : F2t → Ft
2 between F2t and Ft

2.

We give two equivalent definitions of BCH codes. When defining the code, a constant parameter
k ≤ 2t − 2 of the BCH code is given.

Definition 1 (First definition of BCH codes). A BCH code C ⊆ Fn
2 is

C = {f : F2t → F2 | f is the evaluation of a polynomial p(x) ⊆ F2t(x) of degree ≤ 2t − k − 2}.

Definition 2 (Second definition of BCH codes). A BCH code C ⊆ Fn
2 is

C =

f : F2t → F2 |
∑
α∈F2t

f(α) · vα = 0

 ,

where

vα =


ψ(1)
ψ(α)
ψ(α2)

...
ψ(αk)

 ∈ Ft(k+1)
2 .

Note that vα has length t(k + 1) because ψ(1) and each ψ(αi) have length t.

Claim 3. A BCH code C has distance ≥ k + 2.

Proof. We prove this claim with both definitions of the BCH code.

Using the first definition of BCH codes (Definition ??), if f, g ∈ C are distinct codewords, the
number of agreements (that is, |{x ∈ F2t | f(x) = g(x)}|) of f and g is ≤ 2t − k − 2 (as otherwise

1

f = g, a contradiction). Hence, the distance (the number of disagreements) between f and g is
≥ k + 2.

Using the second definition of BCH codes (Definition ??), let S = {i ∈ {1, . . . , n} | f(αi) = 1} be
the set of indices where f is equal to 1. As C is a linear code, it suffices to show that |S| ≥ k + 2.
For f ∈ C, we have  | | |

vα1 vα2 · · · vα2t

| | |

 |
f(α)
|

 =

0...
0


From the definition of S,∑

α∈F2t

f(α)vα = 0 =⇒
∑
α∈S

vα = 0

=⇒
∑
α∈S

ψ(αi) = 0 for all i ∈ {0, 1, . . . , k} by definition of vα

=⇒
∑
α∈S

αi = 0 for all i ∈ {0, 1, . . . , k} by linearity of ψ

We can equivalently express this as below, where each column of the matrix contains powers of all
elements α ∈ S:

k + 1 rows




1
α

· · · · · · α2 · · ·
...
αk︸ ︷︷ ︸

|S| columns




1
1
1
...
1

 =


0
0
0
...
0



If |S| ≤ k + 1, then, as in the previous lecture, we can let αi1 , . . . , αi|S| , αi|S|+1
, . . . , αik+1

∈ F2t be
such that αi1 , . . . αi|S| ∈ S are distinct, and αi|S|+1

, . . . , αik+1
∈ S are distinct from each other, but

not from αi1 , . . . αi|S| , where i1, ..., ik+1 ∈ {1, . . . , n}. But then the Vandermonde matrix
1 1 1 · · · 1
αi1 αi2 αi3 · · · αik+1

α2
i1

α2
i2

α2
i3

· · · α2
ik+1

...
...

...
. . .

...
αk
i1

αk
i2

αk
i3

· · · αk
ik+1


has a determinant of zero (as the αi1 , . . . , αik+1

are not distinct), which is a contradiction. Hence,
we must have |S| ≥ k + 2, as desired.

Observation 4. If we set k = 1, notice that we get the Hamming code, as the second definition of
BCH codes (Definition ??) gives the generator matrix of the Hamming code with a fixed vector
ψ(1) at the top of each column.

2

2 Size of a BCH Code

Let’s determine a lower bound on the size of the BCH code C with a constant distance d. However,
we first make a simplification to the definition of a BCH code. We know that f ∈ C if and only if

t(k + 1) rows



ψ(1) ψ(1) · · · ψ(1)
ψ(α1) ψ(α2) · · · ψ(αn)

...
...

. . .
...

ψ(αk
1) ψ(αk

2) · · · ψ(αk
n)




∣∣∣
f(α)∣∣∣

 =


0
0
...
0

 . (1)

We see that as ψ(1) ∈ Ft
2 and it is nonzero (as ψ is linear), each of the first t rows of the parity-check

matrix above consist of all 1s or all 0s. So, we can replace the first t rows with a single row of all
1’s and end up with the same set C, as all rows of zeroes impose no conditions on f , and all rows
of ones impose the same condition

∑
α∈F2t

f(α) = 0. Hence, (??) is equivalent to

tk + 1 rows




1 1 · · · 1
ψ(α1) ψ(α2) · · · ψ(αn)

...
...

. . .
...

ψ(αk
1) ψ(αk

2) · · · ψ(αk
n)




∣∣∣
f(α)∣∣∣

 =


0
0
...
0

 . (2)

So, dim(C) ≥ 2t − tk − 1, implying that |C| ≥ 22
t−tk−1 = 2n−k log2(n)−1 = 1

2
2n

nk . If the distance of

the code is d = k + 2, this gives a code of size Ω
(

2n

nd−2

)
.

However, we can do even better! In fact, this very same code goes well beyond the Gilbert-

Varshamov bound of Ω
(

2n

nd−1

)
, and meets the Hamming bound ω

(
2n

n(
d−1
2)

)
. To show this, we first

touch on the algebra of F2t .

Fact 5. Given any α, β ∈ Fpt where p is prime, we have (α+ β)p = αp + βp. In particular, given
α, β ∈ F2t, we have (α+ β)2 = α2 + β2, i.e. squaring is a linear operation.1

The above fact holds because any field Fpm where p is prime has characteristic p, hence F2t has
characteristic 2. It also implies that ψ(α2) ∈ span(ψ(α)) for any α ∈ F2t .

Claim 6. Suppose that
∑
α∈F2t

f(α)ψ(α) = 0. Then
∑
α∈F2t

f(α)ψ(α2) = 0.

Proof. We have∑
α∈F2t

f(α)ψ(α) = 0 =⇒
∑
α∈F2t

ψ(f(α) · α) = 0 by linearity of ψ, viewing F2 as a subset of F2t

=⇒ ψ

 ∑
α∈F2t

f(α)α

 = 0

1This is an example of where the “freshman’s dream” is fulfilled!

3

=⇒
∑
α∈F2t

f(α)α = 0

=⇒

 ∑
α∈F2t

f(α)α

2

= 0

=⇒
∑
α∈F2t

f(α)α2 = 0 by Fact ??, and f(α)2 = f(α) since f(α) ∈ F2

=⇒ ψ

 ∑
α∈F2t

f(α)α2

 = 0

=⇒
∑
α∈F2t

f(a)ψ(α2) = 0,

as desired.

Theorem 7. A BCH code C with distance d ∈ O(1) meets the Hamming bound ω

(
2n

n(
d−1
2)

)
.

Proof. The first thing we prove is that the rank of the parity-check matrix in (??) is not tk + 1,
it’s actually half of that! By Fact ??, ψ(α2i) ∈ span(ψ(αi)) for all α ∈ F2t , so we can keep only
the odd-numbered rows in the parity-check matrix in (??), giving

C =

f : F2t → F2|
∑
α∈F2t

f(α)ṽα = 0

 ,

where, setting ℓ =
⌈
k
2

⌉
,

ṽα =


1

ψ(α)
ψ(α3)

...
ψ(α2ℓ−1)

 .

Pushing this through the calculation done at the start of this section, when d is constant, we get a

size of ω

(
2n

n(
d−1
2)

)
, which is the Hamming bound.

For an even k, we get |C| ≥ 22
t−t k

2
−1 =

1

2

2n

n
k
2

∈ Ω

(
2n

n
d
2
−1

)
.

If d ∈ Θ(1), then the BCH codes will match the Hamming bound up to a factor in Θ(1). If
we consider d to be non-constant, we would get similar bounds when d ∈ O(log2(n)), but when
d ∈ Θ(n), we would get a very low lower bound, which isn’t that interesting.

4

3 BCH codes over bigger alphabets

In most practical applications, an alphabet Σ of size 2 often suffices, but, for instance, packets sent
over the internet have huge alphabet sizes. What happens if we consider differently sized alphabets,
for instance, if |Σ| = 3?

Let n = 3t and consider F3t and Ft
3. Similarly to Fact ??, there exists an F3-linear bijection

ψ : F3t → Ft
3 between F3t and Ft

3, and we can define a BCH code as in Definition ??:

C =

f : F3t → F3 |
∑
α∈F3t

f(α)vα = 0

 , (3)

where

vα =


ψ(1)
ψ(α)
ψ(α2)

...
ψ(αk)

 .

As before, C has distance ≥ k+2, and by Fact ??, cubing is a linear operation in F3t . So, we can
eliminate every third row similarly to vα as in the proof of Theorem ?? (as ψ(α3i) ∈ span(ψ(αi))

for all α ∈ F3t) to get ṽα ∈ F≈t·(2k
3
)

3 (the size of ṽα will vary depending on whether k is divisible by
3). This gives

|C| ≳ 33
t− 2k

3
t =

3n

n
2k
3

=
3n

n
2d
3
+O(1)

,

which does not show tightness of the Hamming bound. There are ways to make tiny improvements
to the BCH code’s size, but those improvements are nowhere close to changing the 2

3 factor into
1
2 . For different values of t, one could compute the ranks of the parity-check matrices in (??), but,
they would still (sadly) give codes of size close to 3n

n
2d
3 +O(1)

.

4 Asymptotically Good Codes

For a long while coding theorists struggled with the question of whether there exist codes with
constant rate and constant relative distance. The other parameters are allowed the vary, leading
us to the following definition.

Definition 8. Let (Σn)
∞
n=1 be a sequence of finite alphabets, and (Cn)

∞
n=1 a sequence of codes such

that Cn ⊆ (Σn)
n for each n ∈ N. We say the sequence (Cn) is asymptotically good if there exist

R = Ω(1) and δ = Ω(1) such that for all sufficiently large n

rate(Cn) ≥ R and ∆(Cn) ≥ δn.

It is easy to see that Reed-Solomon codes are asymptotically good for |Σn| ≥ n, and the question
is whether there exists asymptotically good codes with |Σn| = O(1).

5

This question was answered in the affirmative by Forney in the 1970’s, though it took a while for
the community to appreciate the significance of his technique. Forney’s key insight was to use code
concatenation.

Code concatenation requires two codes, and their encoding schemes

C1 ⊆ Σn1
1 Enc1 : Σ

k1
1 → C1;

C2 ⊆ Σn2
2 Enc2 : Σ

k2
2 → C2

satisfying the condition
|Σ1| = |Σ2|k2 .

(Remember from Lecture 1 that for an arbitrary code k = log |C| / log |Σ| is the parameter such
that |Σ|k = |C|.)

The condition allows us to fix some bijection Σ1 → Σk
2 which identifies the two sets. We can

therefore regard each symbol of Σ1 as a string of symbols in Σk
2; applying Enc2 to this string we

obtain a codeword in C2, which is string of n2 symbols. Repeating this process for each symbol in
a codeword x = x1x2 . . . xn1 ∈ C1, we obtain a string s of codewords in C2 of length |s| = n1n2 (see
figure below.)

x1 x2 · · · xn1 Enc2(x1) Enc2(x2) · · · Enc2(xn1)
Enc2

If we regard the resulting string s as a code-word in its own right, what are the parameters of the
resulting ‘concatenation code’ C? Starting with a word in Σk1

1 ≡ Σk1k2
2 , we apply Enc = Enc2◦Enc1

to obtain a word in Σn1n2
2 .

Moreover, if ∆(C1) = d1 and ∆(C2) = d2, then we are guaranteed that ∆(C) ≥ d1d2. Indeed,
given two words x, y ∈ C1, we know they differ in at least d1 symbols, but applying Enc2 to two
different symbols we obtain strings that differ in at least d2 symbols, so that Enc(x),Enc(y) differ
in at least d1d2 symbols.

code alphabet size length distance

C1 Σ1 k1 n1 d1
C2 Σ2 k2 n2 d2
C Σ2 k1k2 n1n2 d1d2

Code concatenation allows us to construct asymptotically good codes. Our plan (to be carried out
in detail next class) is as follows.

� For C1 we take the Reed-Solomon code over F2t
2 of length n = 2t and distance d1 = n1/2 (i.e.,

we consider the set of degree n1/2 polynomials).

� For C2 we brute-force search for a binary linear code with size k2 = t, length 103t, and
distance d2 = 102t.

6

Since 1 − H(10−1) > 10−3, the parameters of C2 satisfy the GV bound. Thus, the existence of
the code C2 is guaranteed by our greedy algorithm, which achieves the GV bound. This algorithm
runs in time 2O(t), and since t = log n we see that we can explicitly construct asymptotically good
codes in time poly(n).

7

