
Lecture 3: Hadamard codes, BCH codes, Reed-Solomon codes

Topics in Error-Correcting Codes (Fall 2022)
University of Toronto

Swastik Kopparty
Scribe: Craig Belair and Kunal Chawla

1 The Hadamard Code

In the previous lecture we introduced the Plotkin Bound. We determined that, for C ⊆ {0, 1}n:

Proposition 1. If C has distance d ≥ n
2 , then |C| ≤ O(n).

Proposition 2. If C has distance δn, then the rate, R of the code C satisfies R+ 2δ ≤ 1 + o(1).

We proved the first by embedding our code into Rn and using the following fact:

Fact 3. If v1, ..., vk ∈ Rn is a collection of vectors with ⟨vi, vj⟩ ≤ 0 for any i ̸= j, then k ≤ 2n.

This bound is sharp: the collection of vectors ±e1, ...,±en attains the 2n bound. Is the correspond-
ing bound on codes also sharp? For now, we will show that if n = 2t − 1, Σ = {0, 1}n, then there
exists a linear code C of distance d = n+1

2 with |C| = n + 1. The type of code we will present is
known as a Hadamard Code.

Let M be a t× 2t − 1 matrix whose columns are comprised of the nonzero elements of Ft
2:

M =


a1,1 a1,2 ... a1,2t−1

a2,1 a2,2 ... a2,2t−1

... ... ... ...
at,1 at,2 ... at,2t−1


Let C be the code generated by the matrixM . That is, for any x ∈ C, x = aM where a ∈ Ft

2. Recall

that the Hamming Code was defined as {x : MxT =
−→
0 } for a matrix M as in our example. It

follows that if k ∈ H (where H is the Hamming Code of the matrix M) and x ∈ C, then k ·x = 0.
That is, the Hadamard Code, C, is the space orthogonal to the Hamming Code.

Claim: C as described above has size 2t.

Proof. Suppose f1, f2 ∈ Ft
2 with f1 ̸= f2, but f1M = f2M . Then (f2 − f1)M =

−→
0 . But if f2 ̸= f1

then f2− f1 has at least one nonzero coordinate. Suppose the i’th coordinate of f2− f1 is nonzero.
By construction, M has a column with all zero entries except the i′th coordinate, call that the j′th
column. Then the j′th coordinate of (f1 − f2)M is nonzero, contradicting our above conclusion.
Thus for any f1, f2 ∈ Ft

2 with f1 ̸= f2, we have f1M ̸= f2M . It follows that |C| = |Ft
2| = 2t.

1



Claim: For any y ∈ Ft
2 with y ̸= −→

0 , it is the case that a yM has Hamming Weight of k ≥
2t−1 > n

2 . Hence the distance of the code C described above is at least n
2 .

Proof. The columns of M are indexed by the elements of Ft
2/{0}. So for any y ∈ (Ft

2/{0}), the i′th
coordinate of yM is ⟨x, y⟩ where x is the element of Ft

2 that makes up the i′th column of M . The
question of how many coordinates of yM are zero is then equivalent to asking how many distinct
elements of S exist where:

S = {x ∈ (Ft
2/{0}) : ⟨x, y⟩ = 0}

Since y ̸= 0, the linear map Ft
2 → F2 given by x → ⟨x, y⟩ is surjective. Hence by rank-nullity the

set S has size 2t−1 − 1. It follows that the Hamming Weight of yM is equal to the number of
coordinates of yM , subtract away the number of coordinates which are 0:

Ham(yM) = (2t − 1)− |S| = 2t − 1− (2t−1 − 1) = 2t−1 =
n+ 1

2
>

n

2

Since C is a linear code, we can conclude that it was distance at least n/2.

Definition 4. An Affine Hadamard Code is a code of length n = 2t, with coordinates identified
with Ft

2 :

C = {f : Ft
2 → F2, f(x) = ⟨x, y⟩+ b for some y ∈ Ft

2, b ∈ F2}

These attain the sharp bound |C| = 2t+1 = 2n

Exercise 5. How would the construction of Hadamard Codes work if we use Fp for a general p,
instead of F2? How do the resulting expressions for |C| and distance d differ from the expressions
we found using F2?

2 More on the Plotkin Bound

We aim to prove proposition 2, the second part of the Plotkin bound. The proof is applying the
first part of the Plotkin bound to a collection of subcodewords of length 2δn.

Proof. Suppose a code C over Σ = {0, 1} has distance δn. For each c ∈ C, represent c = (c1, c2) ∈
Σ(1−2δ)n) × Σ2δn. Define:

Bci := {c = (ci, c2) : c ∈ C}

Then find some j such that |Bcj | ≥ |Bci | for all ci ∈ Σ(1−2δ)n. That is, cj is the most popular (or

tied with the most popular) choice for the first (1− 2δ)n bits of elements of C. There are 2(1−2δ)n

(not necessarily nonempty) such sets B, and they partition C, so that

|Bcj | ≥
|C|

2(1−2δ)n
.

2



Further, we know that the c′2s in Bcj form a distance δn code of length 2δn, hence by proposition
1, |Bcj | ≤ 4δn.

Rearranging, we get |C| ≤ 4δn2(1−2δ)n. Taking logs, we get

R :=
log2 |C|

n
≤ 1− 2δ + o(1).

3 The Singleton Bound

Proposition 6. Over any finite alphabet Σ, any code C of rate R and relative distance δ satisfies

R+ δ ≤ 1 + o(1).

Proof. As in the proof of proposition 2, for each c ∈ C, represent c as (c1, c2) where c1 ∈ Σ(1−δ)n

and c2 ∈ Σδn. Again, define:

Bci := {c = (ci, c2) : c ∈ C}.

Find some cj such that |Bcj | ≥ |Bci | for all ci ∈ Σ(1−δ)n. Then Bcj contains a code of length
δn and distance δn. It follows that all elements of Bcj must have c2 components which share no
common coordinates. So the maximum number of possible elements of Bcj is the number of distinct
characters in the alphabet, that is, |Σ|. Thus:

|C| ≤ |Σ|(1−δ)n+1.

Note that R =
log|Σ|(|C|)

n =⇒ |Σ|Rn = |C|. Substituting this into the previous inequality yields

|Σ|Rn ≤ |Σ|(1−δ)n+1 =⇒ Rn ≤ (1− δ)n+ 1 =⇒ R+ δ ≤ 1 + 1
n = 1 + o(1)

4 Reed-Solomon Codes:

Every time we see an inequality in the wild, we should ask whether it is sharp. In the singleton
bound sharp in any reasonable sense? It turns out it is, but to see why we need to change out
point-of-view a bit. Whenever we analyze codes in this course, we’re always letting some parameter
go to infinity, and working over a fixed alphabet. In this example, we’ll let the size of our alphabet
go to infinity.

Consider the Reed-Solomon Code. Let Σ = Fp for some prime p. Let the string length, n = p,
and let k = (1− δ)p. Then define a code C as the space of polynomial functions of degree ≤ k− 1.
In other words:

3



RSk := {f : Fp → Fp, f(x) =
k∑

i=0

aix
i}.

Here, we’re identifying our coordinates with elements of Fp.

Observation 7. The Reed-Solomon code RSk is a linear code of size pk+1.

Proposition 8. The Reed-Solomon code RSk has distance δp.

Proof. Since RSk is a linear code, it suffices to show that every nonzero element has Hamming
weight ≥ δp. If not, there exists a polynomial of degree k < p with strictly more than (1− δ)p = k
roots, a contradiction.

The contradiction comes from the following fact:

Fact 9. Any nonzero polynomial P of degree d over a field F has at most d roots.

Proof. Let a be a root, then P = (x − a)Q(x) for some Q of degree d − 1. We’re done by
induction.

The Reed-Solomon code has rate 1− δ − 1
p , and distance δ. Hence as p → ∞, the singleton bound

is saturated.

5 Dual of Reed-Solomon Codes

The dual of the Hamming code had nice properties. Let’s look at the dual of the Reed-Solomon
code RSk:

RS⊥k = {g : Fq → Fq : ⟨g, f⟩ = 0 for all f ∈ RSk}.

By finite-field shenanigans, this is also a Reed-Solomon Code!

Theorem 10. RS⊥
k = RSq−k−2.

Proof. Observe that dimRSk = k + 1, that dimRSq−k−2 = q − k − 1, and the space of functions
Fq → Fq has dimension q, so it suffices to show the two spaces are orthogonal.

Notice that for any j, the space RSk is spanned by {xi}i=k
i=0, so really it suffices to show that for

any a ≤ q − 2, we have ∑
x∈Fq

xa = 0.

We can really take the sum over x ̸= 0. Recall that the multiplicative group of any finite field is
cyclic, so pick a generator g ∈ (Fq)

×. Then we can rewrite the sum as

4



q−1∑
ℓ=1

(gℓ)i =
gi − giq

1− g
= 0.

This last step seems a little magical to me, so here’s an alternate proof that
∑

x∈Fq
xi = 0 for any

i ≤ q − 2. At it’s core it’s really a rephrasing of the previous proof, but it avoids mentioning the
fact that (Fq)

× is cyclic.

Proof. For i ∈ {0, ..., q − 2}, denote Si =
∑

x∈Fq
xi. For nonzero a ∈ Fq, the map x → ax is

bijective, so that Si = aiSi. If Si is nonzero, this implies that ai = 1 for all nonzero a. This is a
contradiction since the polynomial xi − 1 = 0 has at most i ≤ q − 2 roots.

6 A Parity Check Matrix for full Reed-Solomon Codes

As an immediate consequence of Theorem ??, we can construct a parity-check matrix Gk for Reed-
Solomon Codes:

q − k − 1 rows





q columns︷ ︸︸ ︷
1
α

· · · · · · α2 · · ·
...

αq−k−2


Here the columns are indexed by elements of Fq. Each row is a basis vector for RSk. By theorem
??, the subspace RSk is precisely the kernel of this matrix. We’ll use the following lemma:

Lemma 11. For any distinct α1, ..., αk, the Vandermonde matrix
1 1 1 . . . 1
α1 α2 α3 . . . αk

α2
1 α2

2 α2
2 . . . α2

3
...

...
...

. . .
...

αk−i1
1 αk−1

2 αk−1
3 . . . αk−1

k


has nonzero determinant.

Proof. Observe that the determinant of this matrix is a polynomial in α1, ..., αk. Writing the
determinant as a sum over permutations, each term has degree 1 + 2 + ... + (k − 1) =

(
k
2

)
. Since

the determinant is alternating, then it is 0 whenever αi = αj . In particular, the determinant is

divisible by
∏

i<j(αj − αi). Since this latter polynomial has degree
(
k
2

)
, we are done.

5



Observation 12. The Reed-Solomon code RSk has distance k.

Proof. Since RSk is a linear code, it suffices to check that the Hamming weight of every nonzero
codeword f ∈ RSk is at least k. Suppose not, then there exists a nonzero codeword x supported on
fewer than k coordinates such that Gk ·x = 0. Let α1, ..., αk ∈ Fq correspond to these k coordinates
(if x is supported on fewer coordinates, choose any distinct α’s to complete the list).

Then the Vandermonde matrix on α1, ..., αk has nontrivial nullspace. In particular it has determi-
nant 0, a contradiction.

7 BCH codes

7.1 Digression on finite fields

Here’s a fact which you may or may not have seen

Fact 13. For any prime power pk, there exists a unique field Fpk of order pk.

We won’t cover the construction in this class1. Every finite field Fpk can be described as follows:
let P be an irreducible polynomial of degree k over Fp, then Fpk

∼= Fp[x]/(P ). Essentially, look at

all polynomials mod P . This is a field of order pk.

As an example, we have F4 = F [x]/(x2 + x + 1). In other words, F4 = {0, 1, α, α + 1} where α
satisfies α2 = α+ 1.

Fact 14. Every field Fpk is naturally a vector space over Fp of dimension k.

7.2 Motivation and construction of BCH Codes

Reed-Solomon codes optimized the function R + δ in the limit as n → ∞, but they required us to
change our alphabet. We can use the idea behind Reed-Solomon codes to construct optimal codes
over Σ = F2. Here optimal is in terms of size - it saturates the volume-packing bound in the limit.

A BCH code is a code of length 2t over F2, parametrized by some number k ≤ 2t−2, with distance
2t − k − 1. We define them simply as the codewords in RSk whose image lies in F2 ⊂ F2t . We can
describe our code as follows:

C = {f : F2t → F2, ∀i ≤ 2t−k−2,
∑
x∈F2t

xif(x) = 0}.

As a subset of a Reed-Solomon code, C has distance 2t−k−1. What is the size of C? We’ll discuss
this next class.

1construct a field extension of Fp over which the polynomial xpk −x splits and let S be the roots–S is the subfield
we want

6


