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1 Linear Codes

Previously, a code is just a subset without special properties. It turns out that codes with vector
space structure admit nice properties such as efficient encoding and decoding.

In the following, we identify {0, 1}n with (F2)
n and work with the latter. In general, the results in

this lecture also holds for fields whose sizes are prime powers. A linear code is a linear subspace of
(F2)

n. From linear algebra, we know that a k-dimensional subspace of (F2)
n has size 2k.

The following fact shows that linear codes can achieve the GV-bound.

Fact 1. For any d ≤ n, there is a linear code C of distance d such that |C| ≥ 2n

Bn(d−1) .

Proof. The proof is almost the same as that of theorem 6 from previous lecture (GV-bound). Except
when we add a vector y, we will update C := C ∪ y + C. We need to show that if C is a linear
code with distance d and y is at least distance d away from any element of C, then C ∪ y + C is
also distance d.

Take u, v ∈ C ∪ y + C. If u ∈ C and v ∈ C, then ∆(u, v) > d because C has distance d. Similarly
for u, v ∈ y + C. Now suppose u ∈ C and v = y + v′ ∈ y + C. Then

∆(u, v) = ∆(u, y + v′) = ∆(y, u− v′) ≥ d.

Given a linear code C of dimension k, an efficient way to encode and decode messages from (F2)
k

is by using a k×n matrix G where the rows form a basis for C. The encoding map is then given by
x 7→ GTx and the decoding map is given by y 7→ G(GTG)−1y. The matrix G is called the generator
matrix of C. Notice that we can get G to have the form

[
Ik | A

]
by row and column operations

(therefore possibly altering the code).

A second way to specify C is via an n−k×n matrix H such that C = kerH; H is called the parity
check matrix.

Recall that we have not specified what it means to construct a code. In the case of linear codes,
“constructing” a code of distance d means to have an algorithm that runs in time poly(n) and
outputs a generator matrix for some C where C is a linear code of distance d.
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2 Random Construction of Codes

Pick x1, x2, . . . , xK uniformly and independently at random from (F2)
n. We hope to obtain a code

that has distance d.

Fix i, j distinct, we have Pr[∆(xi, xj) < d] = Bn(d−1)
2n . Applying union bound gives

Pr[∃i, j : ∆(xi, xj) < d] =

(
K

2

)
Bn(d− 1)

2n
.

We can set K ≈

√
2n

Bn(d− 1)
to make the probability < 1, which shows the existence of a code

with distance d and size K. Replacing d with δn for δ < 1/2, we see that the generated code would
have rate log(K)/n → (1−H(δ))/2 as n → ∞, which is half of the GV-bound.

In the above, we could also set K so that the probability < 1/100. This attributes to a constant
factor 1/10 in front of K. In (logK)/n, this factor becomes an additive constant, which → 0
as n → ∞. This means by decreasing K by a factor of 10, we get that 99/100 of the randomly
generated codes have distance δn while still having rate equal to half of the GV-bound.

Alternatively, let us compute the expected number of pairs of vectors in x1, . . . , xK that are too
close and remove from each pair one vector.

Define Zij = 1 if ∆(xi, xj) < d else 0. Then, E[Zij ] =
Bn(d−1)

2n . By linearity of expectation, we get

E

∑
i,j

Zij

 =

(
K

2

)
Bn(d− 1)

2n
.

By setting K ≤ 2n

100Bn(d−1) , we get that E[
∑

i,j Zij ] ≤ K/100. This means there is a set of size

K = ⌊ 2n

100Bn(d−1)⌋ with at most K/100 pairs of vectors being too close. Remove one from each pair

to get a code C of size 99K/100 with distance d. The size of C is only a constant factor smaller
than 2n

Bn(d−1) , so the rate of codes obtained this way has rate equal to the GV-bound.

3 Random Construction of Linear Codes

Pick x1, . . . , xk uniformly and independently at random from (F2)
n, we compute the probability

that span(x1, . . . , xk) has distance d.

Fact 2. Let C be a linear code. Then C has distance d if and only if wt(y) = ∆(0, y) ≥ d for all
nonzero y ∈ C.

The proof of this fact is the simple observation that ∆(x, y) = ∆(0, y − x).

For v ∈ (F2)
k, define event Bv = “wt(

∑k
i=1 vixi) < d”. Clearly, the above fact shows C is a linear

code of distance d and and only if Bv does not happen for any nonzero v.
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We have Pr[Bv] =
Bn(d−1)

2n since
∑k

i=1 vixi is uniformly distributed on (F2)
n. By union bound, we

get

Pr[∃v ̸= 0 : Bv] = (2k − 1)
Bn(d− 1)

2n
.

If we set k so that 2k < 2n

Bn(d−1) , then there exists a linear code of dimension k (dimension k because

wt(
∑k

i=1 vixi) ≥ d for all nonzero v implies linear independence) and distance d. Even better, if
we decrease k by 10, then at least 1023/1024 of codes constructed this way are of dimension k and
distance d.

The moral of Random Linear Codes is the following:

1. Most linear codes whose dimension is not too large meet the GV bound.

2. Constructing a code meeting the GV bound is a derandomization process.

Let us consider the rate-distance tradeoff curve again:

The algorithm for random linear codes can construct codes that satisfy the GV bound, but we do
not know a deterministic algorithm for this that runs in poly(n) time. In fact, we know how to
deterministally construct codes that satisfy the GV bound in 2Θ(n) time, but we don’t know how
to do better.

4 Plotkin Bound

Plotkin provides new insights to the relation between rate and relative distance, he also shows that
codes with large distance cannot contain too many code words. The main statements are as follows:

1. d ≥ n/2 =⇒ any code with distance d has ≤ O(n) code words.

2. For rate R and relative distance d, one has R+ 2δ < 1 + o(1).
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Statement 2 provides a new rate-distance curve:

We first prove statement 1.

Proof. Consider the map ϕ : Fn
2 → Rn defined by

ϕ(x1, . . . , xn) = ((−1)x1 , . . . , (−1)xn)

Clearly ϕ is injective, so |ϕ(C)| = |C|. ∆(x, y) and the inner product on Rn satisfy the following
relation:

⟨ϕ(x), ϕ(y)⟩ =
n∑

i=1

(−1)xi+yi

= (number of agreements − number of disagreements)(x, y)

= n− 2∆(x, y)

Thus, if C has distance d ≥ n/2, then ∀x, y ∈ C such that x ̸= y, we have ⟨ϕ(x), ϕ(y)⟩ < 0. The
statement then follows directly from the following claim:

Claim 3. For any collection of nonzero vectors in Rn, if any two vectors has ≤ 0 inner product,
then the collection has size at most 2n.

We will prove the claim by induction on n. For Rn, apply appropriate scaling and rotation, denoted
T , to the collection so that some vector is mapped to e1 = (1, 0, . . . , 0). Since rotation and scaling
preserve the sign of inner products, all other vectors after applying the transformation T have the
form (a, b⃗) where a ≤ 0 and b⃗ ∈ Rn−1. For any distinct pair of such vectors, we have:

⟨(a1, b⃗1), (a2, b⃗2)⟩ = a1a2 + ⟨b⃗1, b⃗2⟩ ≤ 0

Since a1, a2 ≤ 0, this implies ⟨b⃗1, b⃗2⟩ ≤ 0. Because we know that after applying T the collection
contains e1, it follows that there can be in total at most two vectors with the form (a, 0⃗). So after
removing at most these two vectors, the rest of b⃗i’s are in Rn−1, nonzero, and satisfy ⟨b⃗i, b⃗j⟩ ≤ 0.

By induction hypothesis, there can by at most 2n − 2 b⃗i’s, and thus the original collection has at
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most 2n− 2 vectors of the form (a, b⃗) satisfying b⃗ ̸= 0. Such vectors together with the at most two
of the form (a, 0⃗) constitute the collection, so there are at most 2n vectors in the collection.
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