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In today’s lecture we will show how to construct explicit expanders with constant degree, i.e.,
d = O(1). This will be done using Zig-Zag products.

To understand the zig-zag prodcut, one might consider the following ”philosophy” in how to sim-
ulate random walks: instead of picking t independent random edges, we can use expanders to pick
our edges (”expander walks”). This will reduce the degree of our graph, and much of what we
analyze in the rest of this lecture is whether this still preserves good absolute spectral expansion.

1 The Zig-Zag Product

The high-level goal is to pick random walks (i.e., t-tuple from [n]t) that don’t lose our original
expansion properties, but somehow use less randomness. Normal random walks pick i1, · · · , it ∈ [n]
independently. An alternative strategy is the following:

1. Pick i ∈ [N ], and j1, · · · , jt−1 ∈ [D]

2. take i1 = i

3. take i2 as jth1 neighbour of i1

4. take im as jthm−1 neighbour of im−1

This approach uses less “randomness” as we are sampling from [D] instead of [N ]. We can in fact
lessen this further by picking ji according to an expander walk on [D] vertices. This operation is
formalized in the notion of a replacement product:

Definition 1 (Replacement Product). Consider G on N vertices with degree D, and H on D

vertices with degree d. Then G R H is a graph on ND vertices with degree d defined as follows:

1. V = [N ]× [D]

2. For l ∈ [d], lth neighbour of (i, j) ∈ V is (i′′, j′′) where

3. j′ = lth neighbour of j in H

1



4. i′′ = j′th neighbour of i in G

5. (i, j′) corresponds to the j′th edge coming from i, we take (i′′, j′′) to be the other vertex
incident to that edge.

The Zig-Zag product uses the same idea, but now simulates two steps using the expander. This
conveniently makes the graph stay undirected (i.e., is symmetric)

Definition 2 (Zig-Zag Product). Consider G and H as in the previous definition. Then G Z H

is the graph on ND vertices with degree d2 defined as follows:

1. V = [N ]× [D]

2. For l1, l2 ∈ [d] the (l1, l2) neighbour of (i, j) is (i′′, j′′′) defined as follows

3. j′ = j[l1] in H

4. i′′ = i[j′] in G

5. j′′ is the edge number from i′′ leading back to i

6. j′′′ = j′′[l2] in H

As we are using expanders to simulate walks (which have good expansion properties already), our
hope is that we did not lose too much of the expansion properties of G. This is formulated in the
following claim.

Claim 3 (Goal). G Z H is a λ-expander where λ = (1 − (1 − λH
d )2(1 − λG

D )). That is, it is good
expander if H and G are too.

In proving this claim, we will make use of the following claim

Claim 4. If F is a c-regular graph on [n] vertices, then F is a λ- absolute expander iff 1
cAF =

(1− λ
c )Jn + λ

cE where ||E|| ≤ 1

Proof. AF =
∑n

i=1 λiviv
T
i where vi are eigenvectors ofAf . Note

∑n
i=1 λiviv

T
i = cv1v

T
1 +

∑
j≥2 λjvjv

T
j =

cJc +
∑

j≥2 λjvjv
T
j .

So we have 1
cAF = J +

∑
j≥2

λj

c vjv
T
j = (1− λ

c )J + λ
c v1v

T
1 +

∑
j≥2

λj

c vjv
T
j , and now we simply define

λ
cE to be our last two terms. Note E = v1v

T
1 +

∑
j≥2

λj

λ vjv
T
j so ||E|| = max(1, λi/λ) = 1

In analyzing the zig-zag product we will also use tensor products; we recall the definition below.

Definition 5 (Tensor Product). The tensor product of M1 and M2, where M1 is a× b and M2 is
a′ × b′, is an aa′ × bb′ matrix M1 ⊗M2 where (M1 ⊗M2)(u,u′),(v,v′) = M1(u,v)M2(u′,v′)

With this we now approach analyzing the spectral expansion of the zig-zag product. Letting
Y = A

G Z H
, we will show that 1

d2
Y = (1− small)JND + small ∗E for some ||E|| ≤ 1, which is

sufficient by Claim 4. The small will be our absolute spectral expansion stated in Claim 3.
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Claim 3. Consider the operations that defined the zig-zag product. We first stayed on the same
clique (coming from replacing vertices in G with H), but moved within the clique according to AH .
We then did a permutation/relabeling corresponding to G. Then we once again moved in the new
clique according to AH . This sequence of operations is equivalent to (AH ⊗ IN )Π(AH ⊗ IN ), where
Π is the permuation according to G, by how tensor products are defined.

Now note, by H being a λH -expander, we have by Claim 4 that 1
dAH = (1− λH

d )JD + λH
d EH . One

can now use this and the linearity of tensor products to get the following:

1

d2
Y = (1− λH

d
)2(JD ⊗ IN )Π(JD ⊗ IN )

+(1− λH

d
)
λH

d
(JD ⊗ IN )Π(EH ⊗ IN )

+(1− λH

d
)
λH

d
(EH ⊗ IN )Π(JD ⊗ IN )

+(
λH

d
)2(EH ⊗ IN )Π(EH ⊗ IN )

(1)

While this seems slightly ugly, note in fact all the terms other than the first term are ”small”
when we have H is a good-expander. So now we analyze the first term. Note that in (JD ⊗
IN )Π(JD ⊗ IN ) the Π simply shifts the uniform probabilites according to transition matrix of G.
Thus (JD⊗IN )Π(JD⊗IN ) = (JD⊗IN )(ID⊗ 1

DAG)(JD⊗IN ). Now we can use the fact multiplication
of tensor products goes through in the natural way, and see (JD ⊗ IN )(ID ⊗ 1

DAG)(JD ⊗ IN ) =
(JD ⊗ 1

DAG)(JD ⊗ IN ) = (JD ⊗ 1
DAG) where we used J2

D = JD.

So the first term is (1 − λH
d )2(JD ⊗ 1

DAG) and now using Claim 4 on 1
DAG we have it equals

(1− λH
d )2(1− λG

D )(JD ⊗ JN ) + (1− λH
d )2 λG

D (JD ⊗ EG)

So going back to 1
d2
Y , we can express 1

d2
Y = (1− λH

d )2(1− λG
D )(JD⊗JN )+(1−(1− λH

d )2(1− λG
D ))E

for some E s.t ||E|| ≤ 1.

This completes the desired proof.

2 Constructing Good Expanders

The Zig-Zag product gave us a way of reducing degree while still maintaining good spectral expan-
sion. If we now have a method to improve spectral expansion (which might also increase degree),
we could couple this with the zig-zag product and take bad expanders and make them good (with
constant degree). This will only require some apriori good expander H to use the zig-zag product
with, but we can brute force search for such expanders if they are small.

The operation will will use to boost the absolute spectral expansion is graph powering (a general-
ization of just squaring):

Definition 6 (Graph Powering). Given a graph G, Gi is the graph defined by Ai
G. In particular,

note λGi = λi
G.

3



We now can give a simple algorithm to construct good expanders:

1. Start with G0 = G with N vertices and d2-regular. Say λ0 :− λG0 = d2(1 − ϵ0) for ϵ0 = 1
N .

Note, we know such graphs exist.

2. Take Gi+1 = G10
i Z H where H has d20 vertices and degree d with λH ≤ (0.1)d. Note we can

brute-force to construct such an H.

Note that Gi+1 is still d2-regular, and 1 −
λGi+1

d2
≥ (1 − λH

d )2(1 − (
λGi
d2

)10). So now looking at

ϵi = 1−
λGi+1

d2
, we see ϵi+1 ≥ (1− (1− ϵi)

10)(0.9)2 ≥ 2ϵi.

Thus we double the absolute spectral gap with each iteration of the algorithm, and hence doing it
O(log(n)) times we will get good epanders (i.e., absolute spectral expansion of the form d2(1−O(1))
as the initial O(1/N) becomes O(1)).
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