Topics in Error-Correcting Codes (Fall 2022) University of Toronto Swastik Kopparty Scribe: Gal Gross

1 Random walks

Let G = (V, E) be a *d*-regular graph of order n (i.e., |V| = n) which is a λ -absolute spectral expander, where $\lambda = 0.9d$ for concreteness¹ We briefly recall the relevant definition. The adjacency matrix of G is real symmetric, and so is diagonalizable over \mathbb{R} , with real eigenvalues $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. The fact that G is *d*-regular implies that $\lambda_1 = d$, and by definition λ -absoluteness means that $\lambda_2, \ldots, \lambda_n \in [-\lambda, \lambda]$. In what follows, we fix an orthonormal eigenbasis $\vec{b}_1, \ldots, \vec{b}_n$, with $\vec{b}_1 = \frac{1}{\sqrt{n}} \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}^T$.

Consider now a random walk on G. A random walk of length ℓ starting at $w_0 \in V$, chooses w_1 uniformly at random among the neighbours of w_0 in G. Given w_1 we then choose w_2 uniformly at random among the neighbours of w_1 in G. We continue this process until we have chosen w_1, \ldots, w_ℓ .

Recall that in order to write down the adjacency matrix of G, we must have fixed some labeling on vertices of G; in what follows it will be convenient to assume that the labels are provided by the elements of V (e.g., $V = \{1, \ldots, n\}$). This labeling allows us to identify the $v \in V$ with the standard basis vector $\vec{e}_v \in \mathbb{R}^{|V|} = \mathbb{R}^n$. Let $\vec{P}_{\ell} \in \mathbb{R}^n$ be the *probability distribution* of vertex w_{ℓ} in the random walk of length ℓ . The v-th component of P_{ℓ} is denoted $P_{\ell}(v)$, it is simply the probability that $w_{\ell} = v$. In particular,

$$\vec{P}_0(v) = \begin{cases} 1 & \text{if } v = w_0; \\ 0 & \text{otherwise.} \end{cases}$$

By the definition of the random walk we have the recursive formula for $\ell > 0$:

$$P_{\ell}(v) = \frac{1}{d} \sum_{w \sim v} P_{\ell-1}(w),$$

where the notation $w \sim v$ means that w and v are neighbours; so that the sum is over the neighbourhood of v. In terms of the vector \vec{P}_{ℓ} we therefore have

$$\vec{P}_{\ell} = \frac{1}{d} A \vec{P}_{t-1}$$

and by induction

$$\vec{P}_{\ell} = \left(\frac{1}{d}A\right)^{\ell} \vec{P}_0.$$

¹Fact: λ may be as small as $O(\sqrt{d})$.

In terms of our eigenbasis we have $A = \sum \lambda_i \vec{b}_i \vec{b}_i^T$ and for any vector $\vec{u} = \sum \alpha_i \vec{b}_i$ we have $A^{\ell} \vec{u} = \sum \alpha_i \lambda_i^{\ell} \vec{b}_i$; note that $\alpha_i = \left\langle \vec{u}, \vec{b}_i \right\rangle$. In particular, $\left\langle \vec{P}_0, \vec{b}_1 \right\rangle = \frac{1}{\sqrt{n}}$. Moreover, for any \vec{P}_{ℓ} we have $\sum \left\langle \vec{P}_{\ell}, \vec{b}_i \right\rangle^2 = \left\| \vec{P}_{\ell} \right\|^2 = 1$, since \vec{P}_{ℓ} represents a probability distribution.

For the case $\vec{u} = \vec{P}_0$ we have by our recursive formula

$$\vec{P}_{\ell} = \left(\frac{1}{d}A\right)^{\ell} \vec{P}_0 = \alpha_1 \vec{b}_1 + \sum_{i=2}^n \left(\frac{\lambda_i}{d}\right)^{\ell} \vec{b}_i.$$

Letting \vec{U}_n denote the uniform distribution vector, we see that $\vec{U}_n = \frac{1}{\sqrt{n}}\vec{b}_1 = \alpha_1\vec{b}_1$. By the Pythagorean theorem,

$$\left\|\vec{P}_{\ell} - \vec{U}_n\right\|^2 = \left\|\sum_{i=2}^n \alpha_i \left(\frac{\lambda_i}{d}\right)^{\ell} \vec{v}_i\right\|^2 = \sum_{i=2}^n \alpha_i^2 \left(\frac{\lambda_i}{d}\right)^{2\ell} \le \left(\frac{\lambda}{d}\right)^{2\ell} \sum_{i=2}^n \alpha_i^2 \le \left(\frac{\lambda}{d}\right)^{2\ell}.$$

(The first inequality follows from the λ -absolute expander assumption that $\lambda_2, \ldots, \lambda_n \in [-\lambda, \lambda]$; the second inequality follows from the fact that $\sum \alpha_i^2 = 1$.)

Since λ was assumed to be 0.9*d*, we see that \vec{P}_{ℓ} very quickly becomes very close to uniform distribution. That is, random walks on expanders have high mixing. Quantitatively, for $\lambda \leq 0.9d$ and $\ell = O(\lg k)$ we have $\left\|\vec{P}_{\ell} - \vec{U}_n\right\|_2 \leq k^{-100}$ and by standard inequalities $\left\|\vec{P}_{\ell} - \vec{U}_n\right\| \leq k^{-99}$.

Remark: The same proof shows that for any connected *d*-regular non-bipartite graph random walks quickly approximate the uniform distribution.

2 Subset-avoiding random walks

Let G = (V, E) be as before. Fix some small subset $S \subseteq V$ and a starting node $v_0 \in V$, say |S| = 0.1n. We'd like to bound the probability that a random walk of length ℓ starting at w_0 completely avoids the set S. I.e.,

$$\Pr[w_0,\ldots,w_\ell\notin S].$$

In full generality, this problem depends too much on the relationship between S and w_0 . (For a trivial example, if $w_0 \in S$, the probability is always 0.) Thus, for a chance at analyzing the situation we need to introduce some randomness. We can take S to be random, but that would defeat the purpose of having a bound which only depends on the size of S. We therefore take w_0 to be random.

In the same notation for vectors and matrices as in the previous section, taking w_0 to be random is equivalent to \vec{P}_0 being the uniform distribution vector $\begin{bmatrix} 1/n & 1/n & \cdots & 1/n \end{bmatrix}^T$. Can we express the probability $\Pr[w_0 \notin S]$ in terms of this vector?

Let M be the $n \times n$ matrix whose v-th column is v if $v \notin S$ and 0 otherwise. Thus M is just the identity matrix with every vector (representing an element) in S replaced with the 0 vector. The

vector $M\vec{P_0}$ is thus the vector $\vec{P_0}$ after changing every v-th entry for $v \in S$ to 0. Taking the sum of the elements $\vec{1}^T M \vec{p_0}$ we obtain the probability $\Pr[w_0 \notin S]$. (Here $\vec{1}$ denote the all 1s vector $[1 \ 1 \ \cdots \ 1]$.)

The previous paragraph is seemingly an overly complicated way to compute

$$\Pr[w_0 \notin S] = \frac{n - |S|}{n} = 0.9.$$

However, the advantage of doing everything in terms of matrices and vectors is that the procedure generalizes to $\Pr[w_0, w_1 \notin S]$. Indeed, $w_0, w_1 \notin S$ means that in our random-walk we should only consider starting-points not in S, this gives us $\frac{1}{d}A(M\vec{P_0})$. Out of this result, we should only keep vectors not in S, so we multiply by M again: $M\frac{1}{d}A(M\vec{P_0})$. Finally, to calculate the probability we sum the entries of the vector:

$$\Pr[w_0, w_1 \notin S] = \vec{1}^T M \frac{1}{d} A M \vec{P}_0.$$

By induction we therefore have

$$\Pr[w_0, w_1, \dots, w_\ell \notin S] = \vec{1}^T \left(M \frac{1}{d} A \right)^\ell M \vec{P}_0 = \vec{1}^T M \left(\frac{1}{d} A M \right)^\ell \vec{P}_0.$$

The point of the rewriting the equality in the last step is that \vec{P}_0 is a unit vector $\left\|\vec{P}_0\right\| = 1$. Our goal is therefore to estimate the expression above, which can be contextualized as the 1-norm of the matrix $\frac{1}{d}AM$. It turns out there are better tools for estimating the (2, 2)-matrix-norm (i.e., operator norm) of $\frac{1}{d}AM$; and there are general theorems from analysis which relate the two norms.

Recall that for an $n \times n$ matrix Q, the operator norm is the minimum number γ such that

$$\|Q\vec{u}\| \le \gamma \|\vec{u}\| \tag{1}$$

for all $\vec{u} \in \mathbb{R}^n$. Thus, it is a measure of the maximum amount by which Q can "stretch" a vector (where the direction may also change). Thus, we always have

$$\|Q\vec{u}\| \leq \gamma \|\vec{u}\|$$
 .

Dividing both sides of (1) by $\|\vec{u}\|$, we see that

$$\gamma = \sup_{\|\vec{u}\|=1} \|Q\vec{u}\|.$$
 (2)

In analysis, one proves that the supremum is in fact a maximum. Since $\|\vec{x}\|^2 = \langle \vec{x}, \vec{x} \rangle$, we also have

$$\gamma^2 = \max_{\|\vec{u}\|=1} \langle Q\vec{u}, Q\vec{u} \rangle$$

We shall need the follow $fact^2$

 $^{^{2}}$ For a proof, see the end of this document.

Fact 0. For Q real symmetric matrix with operator norm γ ,

$$\gamma = \max_{\|\vec{u}\|=1} \left< \vec{u}, Q\vec{u} \right>.$$

We are now ready to carry on with the computation. We are interested in the operator norm of $\frac{1}{d}AM$. It is easy to show that the norm is ≤ 1 , but we'd like to prove it is < 1, since we want to show that iterating the process above (random walk) significantly reduces the probability. This turns out to be difficult to do for the matrix $\frac{1}{d}AM$, so we change the problem by symmetrizing the expression. Since M was obtained from the identity matrix by changing some diagonal entries to 0, it is symmetric and $M^T = M$ and $M^2 = M$. We can therefore rewrite $\Pr[w_0, w_1, \dots, w_{\ell} \notin S]$ one more time:

$$\Pr[w_0, w_1, \dots, w_\ell \notin S] = \vec{1}^T \left(M \frac{1}{d} A \right)^\ell M \vec{P}_0 = \vec{1}^T \left(M \frac{1}{d} A M \right)^\ell \vec{P}_0$$

and so we shall therefore estimate the operator norm of $M \frac{1}{d} A M$.

By 0, we need to bound

$$\max_{\|\vec{u}\|=1} \left\langle \vec{u}, M \frac{1}{d} A M \vec{u} \right\rangle$$

and since $M^T = M$, we have

$$\left\langle \vec{u}, M \frac{1}{d} A M \vec{u} \right\rangle = \left\langle M \vec{u}, \frac{1}{d} A M \vec{u} \right\rangle.$$

Let us therefore write $M\vec{u}$ in our orthonormal basis:

$$M\vec{u} = \sum_{i=1}^{n} \alpha_i \vec{b}_i$$

with $\alpha_i = \langle M\vec{u}, \vec{b}_i \rangle$. In particular, again using the symmetry of M, and Cauchy-Schwartz,

$$\alpha_1 = \frac{1}{\sqrt{n}} \left\langle M \vec{u}, \vec{b}_i \right\rangle = \frac{1}{\sqrt{n}} \left\langle \vec{u}, \vec{u} \right\rangle M \vec{b}_1 = \sqrt{\frac{n - |S|}{n}}$$

Since $\vec{b}_1, \ldots, \vec{b}_n$ is an eigenbasis for A, we have

$$\frac{1}{d}AM\vec{u} = \sum_{i=1}^{n} \alpha_i \frac{\lambda_i}{d} \vec{b}_i$$

Therefore, using the fact that $\vec{b}_1, \ldots, \vec{b}_n$ is orthonormal,

$$\left\langle M\vec{u}, \frac{1}{d}AM\vec{u} \right\rangle = \left\langle \sum_{i=1}^{n} \alpha_i \vec{b}_i, \sum_{i=1}^{n} \alpha_i \frac{\lambda_i}{d} \vec{b}_i \right\rangle = \sum_{i=1}^{n} \alpha_i^2 \frac{\lambda_i}{d}$$

We know $\lambda_1 = d$ and $\lambda_2, \ldots, \lambda_n \leq \lambda$ (by the λ -absolute expansion) so that

$$\sum_{i=1}^n \alpha_i^2 \frac{\lambda_i}{d} \leq \alpha_1^2 + \frac{\lambda}{d} \sum_{i=2}^n \alpha_i^2.$$

Finally, since \vec{u} was assumed to be a unit vector $\sum_{i=1}^{n} \alpha_i^2 = 1$, and we know what α_1 is. Plugging this information we obtain

$$\alpha_1^2 + \frac{\lambda}{d} \sum_{i=2}^n \alpha_i^2 \le \frac{n - |S|}{n} + \frac{\lambda}{d}$$

and this is the bound on the operator norm we were looking for.

Quantitatively, for some $\varepsilon, \eta < 1$ such that $|S| < \varepsilon n$ and $\lambda < \eta d$, as long as $\varepsilon - \eta > 0$ we see that the bound above is strictly less than 1, and so we have exponential decay of the probability $\Pr[w_0, \ldots, w_\ell \notin S]$.

3 Error-reduction for randomized algorithm

Fix some function $f : \{0,1\}^n \to \{0,1\}$. A computable function $A : \{0,1\}^n \times \{0,1\}^m \to \{0,1\}$ is a randomized algorithm for f if for every $\vec{x} \in \{0,1\}^n$

$$\Pr[A(\vec{x}, \vec{r}) = f(\vec{x})] \ge 0.9,$$

where the probability is taken over all $\vec{r} \in \{0, 1\}^m$.

Thus, given m random bits, the algorithm A computes f with error 0.1. The standard way to reduce the error is to run $A(\vec{x}, \vec{r})$ for many independently chosen \vec{r} and then return the majority vote.

There is a related notion of random computation with 1-sided error. A computable function $A : \{0,1\}^n \times \{0,1\}^m \to \{0,1\}$ is a randomized algorithm (for f) with one-sided error if: for every $\vec{x} \in \{0,1\}^n$,

- if f(x) = 0, $A(\vec{x}, \vec{r}) = 0$ for every $\vec{r} \in \{0, 1\}^m$;
- if f(x) = 1, $\Pr[A(\vec{x}, \vec{r}) = 1] \ge 0.9$.

Once again, the standard way to reduce the error is to run $A(\vec{x}, \vec{r})$ for ℓ independently chosen \vec{r} , and then take the "or" of the result:

$$A(\vec{x}, \vec{r_1}) \lor A(\vec{x}, \vec{r_2}) \lor \cdots \lor A(\vec{x}, \vec{r_\ell}).$$

This procedure will reduce the error from 0.1 to $(0.1)^{\ell}$, with the price that we now need $m\ell$ random bits.

Another idea, which costs less random bits, is to use a random walk on expander graphs. In detail, take G a d-regular graph on 2^m vertices labeled by $\{0, 1\}^m$, which is also λ -absolute expander with

 $\lambda \leq 0.01d$. Pick $w_0 \in \{0,1\}^m$ uniformly at random and take a random walk on G of length $\ell - 1$. Use the vertices of the random walk instead of the independently chosen \vec{r} . That is, we return

$$A(\vec{x}, w_0) \lor A(\vec{x}, w_1) \lor \cdots \lor A(\vec{x}, w_\ell).$$

We think of the set S from the previous section as the subset of $\{0, 1\}^m$ such that $A(\vec{x}, \vec{r})$ returns the correct result (so we are guaranteed that $|S| \ge 0.9 |\{0, 1\}^m|$ since the error-rate of A is < 0.1). The probability that the disjunctive expression above returns the wrong answer (in the case f(x) = 1) is the same as the probability that $w_0, \ldots, w_\ell \notin S$, which according to our estimations from Section 2 scales as

$$\left(\frac{n-|S|}{n} + \frac{\lambda}{d}\right)^{\ell} \approx (0.1 + 0.01)^{\ell}$$

(for the parameters we've chosen). Thus, we get a comparable error-reduction to iterating the algorithm. However, in this procedure we've spend m random bits to choose w_0 , and then $\log d$ random bits to choose w_{i+1} from among the d neighbours of w_i . Thus, the total cost of randomness is $m + \ell \log d$ bits, an improvement over the $m\ell$ random bits required for ℓ independent choices of \vec{r} .

For this procedure to be efficiently computable, we need to produce the expander graph in $\mathcal{P}oly(m)$ time, which is $\mathcal{P}olylog(|V|)$. This is a more stringent requirement than what we usually ask of an "explicit construction" which should produce an expander graph in time $\mathcal{P}oly(|V|)$.

Next class we'll see an "explicit construction" (i.e., in time $\mathcal{P}oly(|V|)$) of expander graphs using the zigzag product of graphs.

Appendix: Fact 0 follows from the spectral theorem for symmetric matrices

Fact 0. For any symmetric matrix Q,

$$\max_{\|\vec{u}\|=1} \left\langle Q\vec{u}, Q\vec{u} \right\rangle = \left(\max_{\|\vec{u}\|=1} \left\langle \vec{u}, Q\vec{u} \right\rangle \right)^2.$$

Proof. We first prove the claim for the special case of a diagonal matrix $D = \text{diag}(d_1, \ldots, d_n)$. Let $d = \max\{d_1, \ldots, d_n\}$ be the largest eigenvalue. Then, for any $\vec{u} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$ with $\|\vec{u}\| = 1$, i.e., $\sum_{i=1}^n u_i^2 = 1$, we have

$$\langle D\vec{u}, D\vec{u} \rangle = \sum_{i=1}^{n} (d_i u_i)^2 \le d^2 \sum_{i=1}^{n} u_i^2 = d^2.$$

On the other hand, there is some \vec{e}_i such that $\|D\vec{e}_i\|^2 = d^2$. We conclude that

$$\max_{\|\vec{u}\|=1} \langle Q\vec{u}, Q\vec{u} \rangle = d^2.$$

Exactly the same reasoning shows that

$$\max_{\|\vec{u}\|=1} \left< \vec{u}, Q\vec{u} \right> = d,$$

which proves the claim for diagonal matrices.

For an arbitrary real symmetric matrix Q, the spectral theorem says that Q is diagonalizable by some orthogonal matrix S, which is necessarily an isometry. Thus, $D = S^{-1}QS$, and for any \vec{u} whatsoever we have

$$\|D\vec{u}\| = \|Q\vec{u}\|.$$

In particular, the operator norm of Q is the same as that of D (the largest eigenvalue of Q). Now, $Q = SDS^{-1}$ and since S is orthogonal $S^T = S^{-1}$, so

$$\left\langle \vec{u}, Q \vec{u} \right\rangle = \left\langle \vec{u}, S D S^{-1} \vec{u} \right\rangle = \left\langle S^{-1} \vec{u}, D S^{-1} \vec{u} \right\rangle$$

Finally, since S is an isometry, taking the maximum over all \vec{u} with $\|\vec{u}\| = 1$ is the same as taking the maximum over all $S^{-1}\vec{u}$ with $\|S^{-1}\vec{u}\| = 1$ so we see that

$$\max_{\|\vec{u}\|=1} \langle \vec{u}, Q\vec{u} \rangle = \max_{\|\vec{u}\|=1} \langle \vec{u}, D\vec{u} \rangle.$$

This concludes the proof.