Lecture 10: Random Walks in Expanders

Topics in Error-Correcting Codes (Fall 2022)
University of Toronto
Swastik Kopparty
Scribe: Gal Gross

1 Random walks

Let $G=(V, E)$ be a d-regular graph of order n (i.e., $|V|=n$) which is a λ-absolute spectral expander, where $\lambda=0.9 d$ for concreteness ${ }^{1}$ We briefly recall the relevant definition. The adjacency matrix of G is real symmetric, and so is diagonalizable over \mathbb{R}, with real eigenvalues $\lambda_{1} \geq \lambda_{2} \geq$ $\cdots \geq \lambda_{n}$. The fact that G is d-regular implies that $\lambda_{1}=d$, and by definition λ-absoluteness means that $\lambda_{2}, \ldots, \lambda_{n} \in[-\lambda, \lambda]$. In what follows, we fix an orthonormal eigenbasis $\vec{b}_{1}, \ldots, \vec{b}_{n}$, with $\vec{b}_{1}=\frac{1}{\sqrt{n}}\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right]^{T}$.
Consider now a random walk on G. A random walk of length ℓ starting at $w_{0} \in V$, chooses w_{1} uniformly at random among the neighbours of w_{0} in G. Given w_{1} we then choose w_{2} uniformly at random among the neighbours of w_{1} in G. We continue this process until we have chosen w_{1}, \ldots, w_{ℓ}.

Recall that in order to write down the adjacency matrix of G, we must have fixed some labeling on vertices of G; in what follows it will be convenient to assume that the labels are provided by the elements of V (e.g., $V=\{1, \ldots, n\}$). This labeling allows us to identify the $v \in V$ with the standard basis vector $\vec{e}_{v} \in \mathbb{R}^{|V|}=\mathbb{R}^{n}$. Let $\vec{P}_{\ell} \in \mathbb{R}^{n}$ be the probability distribution of vertex w_{ℓ} in the random walk of length ℓ. The v-th component of P_{ℓ} is denoted $P_{\ell}(v)$, it is simply the probability that $w_{\ell}=v$. In particular,

$$
\vec{P}_{0}(v)= \begin{cases}1 & \text { if } v=w_{0} \\ 0 & \text { otherwise }\end{cases}
$$

By the definition of the random walk we have the recursive formula for $\ell>0$:

$$
P_{\ell}(v)=\frac{1}{d} \sum_{w \sim v} P_{\ell-1}(w),
$$

where the notation $w \sim v$ means that w and v are neighbours; so that the sum is over the neighbourhood of v. In terms of the vector \vec{P}_{ℓ} we therefore have

$$
\vec{P}_{\ell}=\frac{1}{d} A \vec{P}_{t-1}
$$

and by induction

$$
\vec{P}_{\ell}=\left(\frac{1}{d} A\right)^{\ell} \vec{P}_{0} .
$$

[^0]In terms of our eigenbasis we have $A=\sum \lambda_{i} \vec{b}_{i} \vec{b}_{i}^{T}$ and for any vector $\vec{u}=\sum \alpha_{i} \vec{b}_{i}$ we have $A^{\ell} \vec{u}=$ $\sum \alpha_{i} \lambda_{i}^{\ell} \vec{b}_{i}$; note that $\alpha_{i}=\left\langle\vec{u}, \vec{b}_{i}\right\rangle$. In particular, $\left\langle\vec{P}_{0}, \vec{b}_{1}\right\rangle=\frac{1}{\sqrt{n}}$. Moreover, for any \vec{P}_{ℓ} we have $\sum\left\langle\vec{P}_{\ell}, \vec{b}_{i}\right\rangle^{2}=\left\|\vec{P}_{\ell}\right\|^{2}=1$, since \vec{P}_{ℓ} represents a probability distribution.

For the case $\vec{u}=\vec{P}_{0}$ we have by our recursive formula

$$
\vec{P}_{\ell}=\left(\frac{1}{d} A\right)^{\ell} \vec{P}_{0}=\alpha_{1} \vec{b}_{1}+\sum_{i=2}^{n}\left(\frac{\lambda_{i}}{d}\right)^{\ell} \vec{b}_{i} .
$$

Letting \vec{U}_{n} denote the uniform distribution vector, we see that $\vec{U}_{n}=\frac{1}{\sqrt{n}} \vec{b}_{1}=\alpha_{1} \vec{b}_{1}$. By the Pythagorean theorem,

$$
\left\|\vec{P}_{\ell}-\vec{U}_{n}\right\|^{2}=\left\|\sum_{i=2}^{n} \alpha_{i}\left(\frac{\lambda_{i}}{d}\right)^{\ell} \vec{v}_{i}\right\|^{2}=\sum_{i=2}^{n} \alpha_{i}^{2}\left(\frac{\lambda_{i}}{d}\right)^{2 \ell} \leq\left(\frac{\lambda}{d}\right)^{2 \ell} \sum_{i=2}^{n} \alpha_{i}^{2} \leq\left(\frac{\lambda}{d}\right)^{2 \ell} .
$$

(The first inequality follows from the λ-absolute expander assumption that $\lambda_{2}, \ldots, \lambda_{n} \in[-\lambda, \lambda]$; the second inequality follows from the fact that $\sum \alpha_{i}^{2}=1$.)
Since λ was assumed to be $0.9 d$, we see that \vec{P}_{ℓ} very quickly becomes very close to uniform distribution. That is, random walks on expanders have high mixing. Quantitatively, for $\lambda \leq 0.9 d$ and $\ell=O(\lg k)$ we have $\left\|\vec{P}_{\ell}-\vec{U}_{n}\right\|_{2} \leq k^{-100}$ and by standard inequalities $\left\|\vec{P}_{\ell}-\vec{U}_{n}\right\| \leq k^{-99}$.

Remark: The same proof shows that for any connected d-regular non-bipartite graph random walks quickly approximate the uniform distribution.

2 Subset-avoiding random walks

Let $G=(V, E)$ be as before. Fix some small subset $S \subseteq V$ and a starting node $v_{0} \in V$, say $|S|=0.1 n$. We'd like to bound the probability that a random walk of length ℓ starting at w_{0} completely avoids the set S. I.e.,

$$
\operatorname{Pr}\left[w_{0}, \ldots, w_{\ell} \notin S\right] .
$$

In full generality, this problem depends too much on the relationship between S and w_{0}. (For a trivial example, if $w_{0} \in S$, the probability is always 0 .) Thus, for a chance at analyzing the situation we need to introduce some randomness. We can take S to be random, but that would defeat the purpose of having a bound which only depends on the size of S. We therefore take w_{0} to be random.

In the same notation for vectors and matrices as in the previous section, taking w_{0} to be random is equivalent to \vec{P}_{0} being the uniform distribution vector $\left[\begin{array}{llll}1 / n & 1 / n & \cdots & 1 / n\end{array}\right]^{T}$. Can we express the probability $\operatorname{Pr}\left[w_{0} \notin S\right]$ in terms of this vector?

Let M be the $n \times n$ matrix whose v-th column is v if $v \notin S$ and 0 otherwise. Thus M is just the identity matrix with every vector (representing an element) in S replaced with the 0 vector. The
vector $M \vec{P}_{0}$ is thus the vector \vec{P}_{0} after changing every v-th entry for $v \in S$ to 0 . Taking the sum of the elements $\overrightarrow{1}^{T} M \vec{p}_{0}$ we obtain the probability $\operatorname{Pr}\left[w_{0} \notin S\right]$. (Here $\overrightarrow{1}$ denote the all 1 s vector $\left.\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right].\right)$
The previous paragraph is seemingly an overly complicated way to compute

$$
\operatorname{Pr}\left[w_{0} \notin S\right]=\frac{n-|S|}{n}=0.9 .
$$

However, the advantage of doing everything in terms of matrices and vectors is that the procedure generalizes to $\operatorname{Pr}\left[w_{0}, w_{1} \notin S\right]$. Indeed, $w_{0}, w_{1} \notin S$ means that in our random-walk we should only consider starting-points not in S, this gives us $\frac{1}{d} A\left(M \vec{P}_{0}\right)$. Out of this result, we should only keep vectors not in S, so we multiply by M again: $M \frac{1}{d} A\left(M \vec{P}_{0}\right)$. Finally, to calculate the probability we sum the entries of the vector:

$$
\operatorname{Pr}\left[w_{0}, w_{1} \notin S\right]=\overrightarrow{1}^{T} M \frac{1}{d} A M \vec{P}_{0} .
$$

By induction we therefore have

$$
\operatorname{Pr}\left[w_{0}, w_{1}, \ldots, w_{\ell} \notin S\right]=\overrightarrow{1}^{T}\left(M \frac{1}{d} A\right)^{\ell} M \vec{P}_{0}=\overrightarrow{1}^{T} M\left(\frac{1}{d} A M\right)^{\ell} \vec{P}_{0} .
$$

The point of the rewriting the equality in the last step is that \vec{P}_{0} is a unit vector $\left\|\vec{P}_{0}\right\|=1$. Our goal is therefore to estimate the expression above, which can be contextualized as the 1-norm of the matrix $\frac{1}{d} A M$. It turns out there are better tools for estimating the $(2,2)$-matrix-norm (i.e., operator norm) of $\frac{1}{d} A M$; and there are general theorems from analysis which relate the two norms.

Recall that for an $n \times n$ matrix Q, the operator norm is the minimum number γ such that

$$
\begin{equation*}
\|Q \vec{u}\| \leq \gamma\|\vec{u}\| \tag{1}
\end{equation*}
$$

for all $\vec{u} \in \mathbb{R}^{n}$. Thus, it is a measure of the maximum amount by which Q can "stretch" a vector (where the direction may also change). Thus, we always have

$$
\|Q \vec{u}\| \leq \gamma\|\vec{u}\|
$$

Dividing both sides of (1) by $\|\vec{u}\|$, we see that

$$
\begin{equation*}
\gamma=\sup _{\|\vec{u}\|=1}\|Q \vec{u}\| \tag{2}
\end{equation*}
$$

In analysis, one proves that the supremum is in fact a maximum. Since $\|\vec{x}\|^{2}=\langle\vec{x}, \vec{x}\rangle$, we also have

$$
\gamma^{2}=\max _{\|\vec{u}\|=1}\langle Q \vec{u}, Q \vec{u}\rangle .
$$

We shall need the follow fact ${ }^{2}$

[^1]Fact 0. For Q real symmetric matrix with operator norm γ,

$$
\gamma=\max _{\|\vec{u}\|=1}\langle\vec{u}, Q \vec{u}\rangle
$$

We are now ready to carry on with the computation. We are interested in the operator norm of $\frac{1}{d} A M$. It is easy to show that the norm is ≤ 1, but we'd like to prove it is <1, since we want to show that iterating the process above (random walk) significantly reduces the probability. This turns out to be difficult to do for the matrix $\frac{1}{d} A M$, so we change the problem by symmetrizing the expression. Since M was obtained from the identity matrix by changing some diagonal entries to 0 , it is symmetric and $M^{T}=M$ and $M^{2}=M$. We can therefore rewrite $\operatorname{Pr}\left[w_{0}, w_{1}, \cdots, w_{\ell} \notin S\right]$ one more time:

$$
\operatorname{Pr}\left[w_{0}, w_{1}, \ldots, w_{\ell} \notin S\right]=\overrightarrow{1}^{T}\left(M \frac{1}{d} A\right)^{\ell} M \vec{P}_{0}=\overrightarrow{1}^{T}\left(M \frac{1}{d} A M\right)^{\ell} \vec{P}_{0}
$$

and so we shall therefore estimate the operator norm of $M \frac{1}{d} A M$.
By 0, we need to bound

$$
\max _{\|\vec{u}\|=1}\left\langle\vec{u}, M \frac{1}{d} A M \vec{u}\right\rangle
$$

and since $M^{T}=M$, we have

$$
\left\langle\vec{u}, M \frac{1}{d} A M \vec{u}\right\rangle=\left\langle M \vec{u}, \frac{1}{d} A M \vec{u}\right\rangle
$$

Let us therefore write $M \vec{u}$ in our orthonormal basis:

$$
M \vec{u}=\sum_{i=1}^{n} \alpha_{i} \vec{b}_{i}
$$

with $\alpha_{i}=\left\langle M \vec{u}, \vec{b}_{i}\right\rangle$. In particular, again using the symmetry of M, and Cauchy-Schwartz,

$$
\alpha_{1}=\frac{1}{\sqrt{n}}\left\langle M \vec{u}, \vec{b}_{i}\right\rangle=\frac{1}{\sqrt{n}}\langle\vec{u}, \vec{u}\rangle M \vec{b}_{1}=\sqrt{\frac{n-|S|}{n}} .
$$

Since $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is an eigenbasis for A, we have

$$
\frac{1}{d} A M \vec{u}=\sum_{i=1}^{n} \alpha_{i} \frac{\lambda_{i}}{d} \vec{b}_{i}
$$

Therefore, using the fact that $\vec{b}_{1}, \ldots, \vec{b}_{n}$ is orthonormal,

$$
\left\langle M \vec{u}, \frac{1}{d} A M \vec{u}\right\rangle=\left\langle\sum_{i=1}^{n} \alpha_{i} \vec{b}_{i}, \sum_{i=1}^{n} \alpha_{i} \frac{\lambda_{i}}{d} \vec{b}_{i}\right\rangle=\sum_{i=1}^{n} \alpha_{i}^{2} \frac{\lambda_{i}}{d}
$$

We know $\lambda_{1}=d$ and $\lambda_{2}, \ldots, \lambda_{n} \leq \lambda$ (by the λ-absolute expansion) so that

$$
\sum_{i=1}^{n} \alpha_{i}^{2} \frac{\lambda_{i}}{d} \leq \alpha_{1}^{2}+\frac{\lambda}{d} \sum_{i=2}^{n} \alpha_{i}^{2}
$$

Finally, since \vec{u} was assumed to be a unit vector $\sum_{i=1}^{n} \alpha_{i}^{2}=1$, and we know what α_{1} is. Plugging this information we obtain

$$
\alpha_{1}^{2}+\frac{\lambda}{d} \sum_{i=2}^{n} \alpha_{i}^{2} \leq \frac{n-|S|}{n}+\frac{\lambda}{d}
$$

and this is the bound on the operator norm we were looking for.
Quantitatively, for some $\varepsilon, \eta<1$ such that $|S|<\varepsilon n$ and $\lambda<\eta d$, as long as $\varepsilon-\eta>0$ we see that the bound above is strictly less than 1 , and so we have exponential decay of the probability $\operatorname{Pr}\left[w_{0}, \ldots, w_{\ell} \notin S\right]$.

3 Error-reduction for randomized algorithm

Fix some function $f:\{0,1\}^{n} \rightarrow\{0,1\}$. A computable function $A:\{0,1\}^{n} \times\{0,1\}^{m} \rightarrow\{0,1\}$ is a randomized algorithm for f if for every $\vec{x} \in\{0,1\}^{n}$

$$
\operatorname{Pr}[A(\vec{x}, \vec{r})=f(\vec{x})] \geq 0.9,
$$

where the probability is taken over all $\vec{r} \in\{0,1\}^{m}$.
Thus, given m random bits, the algorithm A computes f with error 0.1 . The standard way to reduce the error is to run $A(\vec{x}, \vec{r})$ for many independently chosen \vec{r} and then return the majority vote.

There is a related notion of random computation with 1 -sided error. A computable function A : $\{0,1\}^{n} \times\{0,1\}^{m} \rightarrow\{0,1\}$ is a randomized algorithm (for f) with one-sided error if: for every $\vec{x} \in\{0,1\}^{n}$,

- if $f(x)=0, A(\vec{x}, \vec{r})=0$ for every $\vec{r} \in\{0,1\}^{m}$;
- if $f(x)=1, \operatorname{Pr}[A(\vec{x}, \vec{r})=1] \geq 0.9$.

Once again, the standard way to reduce the error is to run $A(\vec{x}, \vec{r})$ for ℓ independently chosen \vec{r}, and then take the "or" of the result:

$$
A\left(\vec{x}, \vec{r}_{1}\right) \vee A\left(\vec{x}, \vec{r}_{2}\right) \vee \cdots \vee A\left(\vec{x}, \vec{r}_{\ell}\right) .
$$

This procedure will reduce the error from 0.1 to $(0.1)^{\ell}$, with the price that we now need $m \ell$ random bits.

Another idea, which costs less random bits, is to use a random walk on expander graphs. In detail, take G a d-regular graph on 2^{m} vertices labeled by $\{0,1\}^{m}$, which is also λ-absolute expander with
$\lambda \leq 0.01 d$. Pick $w_{0} \in\{0,1\}^{m}$ uniformly at random and take a random walk on G of length $\ell-1$. Use the vertices of the random walk instead of the independently chosen \vec{r}. That is, we return

$$
A\left(\vec{x}, w_{0}\right) \vee A\left(\vec{x}, w_{1}\right) \vee \cdots \vee A\left(\vec{x}, w_{\ell}\right) .
$$

We think of the set S from the previous section as the subset of $\{0,1\}^{m}$ such that $A(\vec{x}, \vec{r})$ returns the correct result (so we are guaranteed that $|S| \geq 0.9\left|\{0,1\}^{m}\right|$ since the error-rate of A is <0.1). The probability that the disjunctive expression above returns the wrong answer (in the case $f(x)=1$) is the same as the probability that $w_{0}, \ldots, w_{\ell} \notin S$, which according to our estimations from Section 2 scales as

$$
\left(\frac{n-|S|}{n}+\frac{\lambda}{d}\right)^{\ell} \approx(0.1+0.01)^{\ell}
$$

(for the parameters we've chosen). Thus, we get a comparable error-reduction to iterating the algorithm. However, in this procedure we've spend m random bits to choose w_{0}, and then $\log d$ random bits to choose w_{i+1} from among the d neighbours of w_{i}. Thus, the total cost of randomness is $m+\ell \log d$ bits, an improvement over the $m \ell$ random bits required for ℓ independent choices of \vec{r}.

For this procedure to be efficiently computable, we need to produce the expander graph in \mathcal{P} oly (m) time, which is \mathcal{P} olylog $(|V|)$. This is a more stringent requirement than what we usually ask of an "explicit construction" which should produce an expander graph in time \mathcal{P} oly $(|V|)$.
Next class we'll see an "explicit construction" (i.e., in time \mathcal{P} oly $(|V|)$) of expander graphs using the zigzag product of graphs.

Appendix: Fact 0 follows from the spectral theorem for symmetric matrices

Fact 0. For any symmetric matrix Q,

$$
\max _{\|\vec{u}\|=1}\langle Q \vec{u}, Q \vec{u}\rangle=\left(\max _{\|\vec{u}\|=1}\langle\vec{u}, Q \vec{u}\rangle\right)^{2}
$$

Proof. We first prove the claim for the special case of a diagonal matrix $D=\operatorname{diag}\left(d_{1}, \ldots, d_{n}\right)$. Let $d=\max \left\{d_{1}, \ldots, d_{n}\right\}$ be the largest eigenvalue. Then, for any $\vec{u}=\left[\begin{array}{llll}u_{1} & u_{2} & \cdots & u_{n}\end{array}\right]$ with $\|\vec{u}\|=1$, i.e., $\sum_{i=1}^{n} u_{i}^{2}=1$, we have

$$
\langle D \vec{u}, D \vec{u}\rangle=\sum_{i=1}^{n}\left(d_{i} u_{i}\right)^{2} \leq d^{2} \sum_{i=1}^{n} u_{i}^{2}=d^{2}
$$

On the other hand, there is some \vec{e}_{i} such that $\left\|D \vec{e}_{i}\right\|^{2}=d^{2}$. We conclude that

$$
\max _{\|\vec{u}\|=1}\langle Q \vec{u}, Q \vec{u}\rangle=d^{2}
$$

Exactly the same reasoning shows that

$$
\max _{\|\vec{u}\|=1}\langle\vec{u}, Q \vec{u}\rangle=d
$$

which proves the claim for diagonal matrices.
For an arbitrary real symmetric matrix Q, the spectral theorem says that Q is diagonalizable by some orthogonal matrix S, which is necessarily an isometry. Thus, $D=S^{-1} Q S$, and for any \vec{u} whatsoever we have

$$
\|D \vec{u}\|=\|Q \vec{u}\| .
$$

In particular, the operator norm of Q is the same as that of D (the largest eigenvalue of Q). Now, $Q=S D S^{-1}$ and since S is orthogonal $S^{T}=S^{-1}$, so

$$
\langle\vec{u}, Q \vec{u}\rangle=\left\langle\vec{u}, S D S^{-1} \vec{u}\right\rangle=\left\langle S^{-1} \vec{u}, D S^{-1} \vec{u}\right\rangle
$$

Finally, since S is an isometry, taking the maximum over all \vec{u} with $\|\vec{u}\|=1$ is the same as taking the maximum over all $S^{-1} \vec{u}$ with $\left\|S^{-1} \vec{u}\right\|=1$ so we see that

$$
\max _{\|\vec{u}\|=1}\langle\vec{u}, Q \vec{u}\rangle=\max _{\|\vec{u}\|=1}\langle\vec{u}, D \vec{u}\rangle .
$$

This concludes the proof.

[^0]: ${ }^{1}$ Fact: λ may be as small as $O(\sqrt{d})$.

[^1]: ${ }^{2}$ For a proof, see the end of this document.

