
Lecture 10: Random Walks in Expanders

Topics in Error-Correcting Codes (Fall 2022)
University of Toronto

Swastik Kopparty
Scribe: Gal Gross

1 Random walks

Let G = (V,E) be a d-regular graph of order n (i.e., |V | = n) which is a λ-absolute spectral
expander, where λ = 0.9d for concreteness1 We briefly recall the relevant definition. The adjacency
matrix of G is real symmetric, and so is diagonalizable over R, with real eigenvalues λ1 ≥ λ2 ≥
· · · ≥ λn. The fact that G is d-regular implies that λ1 = d, and by definition λ-absoluteness
means that λ2, . . . , λn ∈ [−λ, λ]. In what follows, we fix an orthonormal eigenbasis b⃗1, . . . , b⃗n, with

b⃗1 =
1√
n

[
1 1 · · · 1

]T
.

Consider now a random walk on G. A random walk of length ℓ starting at w0 ∈ V , chooses w1

uniformly at random among the neighbours of w0 in G. Given w1 we then choose w2 uniformly at
random among the neighbours of w1 in G. We continue this process until we have chosen w1, . . . , wℓ.

Recall that in order to write down the adjacency matrix of G, we must have fixed some labeling
on vertices of G; in what follows it will be convenient to assume that the labels are provided by
the elements of V (e.g., V = {1, . . . , n}). This labeling allows us to identify the v ∈ V with the
standard basis vector e⃗v ∈ R|V | = Rn. Let P⃗ℓ ∈ Rn be the probability distribution of vertex wℓ in the
random walk of length ℓ. The v-th component of Pℓ is denoted Pℓ(v), it is simply the probability
that wℓ = v. In particular,

P⃗0(v) =

{
1 if v = w0;

0 otherwise.

By the definition of the random walk we have the recursive formula for ℓ > 0:

Pℓ(v) =
1

d

∑
w∼v

Pℓ−1(w),

where the notation w ∼ v means that w and v are neighbours; so that the sum is over the
neighbourhood of v. In terms of the vector P⃗ℓ we therefore have

P⃗ℓ =
1

d
AP⃗t−1

and by induction

P⃗ℓ =

(
1

d
A

)ℓ

P⃗0.

1Fact: λ may be as small as O(
√
d).

1

In terms of our eigenbasis we have A =
∑

λi⃗bi⃗b
T
i and for any vector u⃗ =

∑
αi⃗bi we have Aℓu⃗ =∑

αiλ
ℓ
i b⃗i; note that αi =

〈
u⃗, b⃗i

〉
. In particular,

〈
P⃗0, b⃗1

〉
= 1√

n
. Moreover, for any P⃗ℓ we have∑〈

P⃗ℓ, b⃗i

〉2
=

∥∥∥P⃗ℓ

∥∥∥2 = 1, since P⃗ℓ represents a probability distribution.

For the case u⃗ = P⃗0 we have by our recursive formula

P⃗ℓ =

(
1

d
A

)ℓ

P⃗0 = α1⃗b1 +
n∑

i=2

(
λi

d

)ℓ

b⃗i.

Letting U⃗n denote the uniform distribution vector, we see that U⃗n = 1√
n
b⃗1 = α1⃗b1. By the

Pythagorean theorem,

∥∥∥P⃗ℓ − U⃗n

∥∥∥2 = ∥∥∥∥∥
n∑

i=2

αi

(
λi

d

)ℓ

v⃗i

∥∥∥∥∥
2

=

n∑
i=2

α2
i

(
λi

d

)2ℓ

≤
(
λ

d

)2ℓ n∑
i=2

α2
i ≤

(
λ

d

)2ℓ

.

(The first inequality follows from the λ-absolute expander assumption that λ2, . . . , λn ∈ [−λ, λ];
the second inequality follows from the fact that

∑
α2
i = 1.)

Since λ was assumed to be 0.9d, we see that P⃗ℓ very quickly becomes very close to uniform distri-
bution. That is, random walks on expanders have high mixing. Quantitatively, for λ ≤ 0.9d and

ℓ = O(lg k) we have
∥∥∥P⃗ℓ − U⃗n

∥∥∥
2
≤ k−100 and by standard inequalities

∥∥∥P⃗ℓ − U⃗n

∥∥∥ ≤ k−99.

Remark: The same proof shows that for any connected d-regular non-bipartite graph random
walks quickly approximate the uniform distribution.

2 Subset-avoiding random walks

Let G = (V,E) be as before. Fix some small subset S ⊆ V and a starting node v0 ∈ V , say
|S| = 0.1n. We’d like to bound the probability that a random walk of length ℓ starting at w0

completely avoids the set S. I.e.,
Pr[w0, . . . , wℓ /∈ S].

In full generality, this problem depends too much on the relationship between S and w0. (For
a trivial example, if w0 ∈ S, the probability is always 0.) Thus, for a chance at analyzing the
situation we need to introduce some randomness. We can take S to be random, but that would
defeat the purpose of having a bound which only depends on the size of S. We therefore take w0

to be random.

In the same notation for vectors and matrices as in the previous section, taking w0 to be random

is equivalent to P⃗0 being the uniform distribution vector
[
1/n 1/n · · · 1/n

]T
. Can we express

the probability Pr[w0 /∈ S] in terms of this vector?

Let M be the n × n matrix whose v-th column is v if v /∈ S and 0 otherwise. Thus M is just the
identity matrix with every vector (representing an element) in S replaced with the 0 vector. The

2

vector MP⃗0 is thus the vector P⃗0 after changing every v-th entry for v ∈ S to 0. Taking the sum
of the elements 1⃗TMp⃗0 we obtain the probability Pr[w0 /∈ S]. (Here 1⃗ denote the all 1s vector[
1 1 · · · 1

]
.)

The previous paragraph is seemingly an overly complicated way to compute

Pr[w0 /∈ S] =
n− |S|

n
= 0.9.

However, the advantage of doing everything in terms of matrices and vectors is that the procedure
generalizes to Pr[w0, w1 /∈ S]. Indeed, w0, w1 /∈ S means that in our random-walk we should only
consider starting-points not in S, this gives us 1

dA(MP⃗0). Out of this result, we should only keep

vectors not in S, so we multiply by M again: M 1
dA(MP⃗0). Finally, to calculate the probability we

sum the entries of the vector:

Pr[w0, w1 /∈ S] = 1⃗TM
1

d
AMP⃗0.

By induction we therefore have

Pr[w0, w1, . . . , wℓ /∈ S] = 1⃗T
(
M

1

d
A

)ℓ

MP⃗0 = 1⃗TM

(
1

d
AM

)ℓ

P⃗0.

The point of the rewriting the equality in the last step is that P⃗0 is a unit vector
∥∥∥P⃗0

∥∥∥ = 1. Our

goal is therefore to estimate the expression above, which can be contextualized as the 1-norm of
the matrix 1

dAM . It turns out there are better tools for estimating the (2, 2)-matrix-norm (i.e.,
operator norm) of 1

dAM ; and there are general theorems from analysis which relate the two norms.

Recall that for an n× n matrix Q, the operator norm is the minimum number γ such that

∥Qu⃗∥ ≤ γ ∥u⃗∥ (1)

for all u⃗ ∈ Rn. Thus, it is a measure of the maximum amount by which Q can “stretch” a vector
(where the direction may also change). Thus, we always have

∥Qu⃗∥ ≤ γ ∥u⃗∥ .

Dividing both sides of (1) by ∥u⃗∥, we see that

γ = sup
∥u⃗∥=1

∥Qu⃗∥ . (2)

In analysis, one proves that the supremum is in fact a maximum. Since ∥x⃗∥2 = ⟨x⃗, x⃗⟩, we also have

γ2 = max
∥u⃗∥=1

⟨Qu⃗,Qu⃗⟩ .

We shall need the follow fact2

2For a proof, see the end of this document.

3

Fact 0. For Q real symmetric matrix with operator norm γ,

γ = max
∥u⃗∥=1

⟨u⃗, Qu⃗⟩ .

We are now ready to carry on with the computation. We are interested in the operator norm of
1
dAM . It is easy to show that the norm is ≤ 1, but we’d like to prove it is < 1, since we want
to show that iterating the process above (random walk) significantly reduces the probability. This
turns out to be difficult to do for the matrix 1

dAM , so we change the problem by symmetrizing the
expression. Since M was obtained from the identity matrix by changing some diagonal entries to
0, it is symmetric and MT = M and M2 = M . We can therefore rewrite Pr[w0, w1, · · · , wℓ /∈ S]
one more time:

Pr[w0, w1, . . . , wℓ /∈ S] = 1⃗T
(
M

1

d
A

)ℓ

MP⃗0 = 1⃗T (M
1

d
AM)ℓP⃗0

and so we shall therefore estimate the operator norm of M 1
dAM .

By 0, we need to bound

max
∥u⃗∥=1

〈
u⃗,M

1

d
AMu⃗

〉
and since MT = M , we have 〈

u⃗,M
1

d
AMu⃗

〉
=

〈
Mu⃗,

1

d
AMu⃗

〉
.

Let us therefore write Mu⃗ in our orthonormal basis:

Mu⃗ =
n∑

i=1

αi⃗bi

with αi =
〈
Mu⃗, b⃗i

〉
. In particular, again using the symmetry of M , and Cauchy-Schwartz,

α1 =
1√
n

〈
Mu⃗, b⃗i

〉
=

1√
n
⟨u⃗, u⃗⟩Mb⃗1 =

√
n− |S|

n
.

Since b⃗1, . . . , b⃗n is an eigenbasis for A, we have

1

d
AMu⃗ =

n∑
i=1

αi
λi

d
b⃗i.

Therefore, using the fact that b⃗1, . . . , b⃗n is orthonormal,〈
Mu⃗,

1

d
AMu⃗

〉
=

〈
n∑

i=1

αi⃗bi,

n∑
i=1

αi
λi

d
b⃗i

〉
=

n∑
i=1

α2
i

λi

d
.

4

We know λ1 = d and λ2, . . . , λn ≤ λ (by the λ-absolute expansion) so that

n∑
i=1

α2
i

λi

d
≤ α2

1 +
λ

d

n∑
i=2

α2
i .

Finally, since u⃗ was assumed to be a unit vector
∑n

i=1 α
2
i = 1, and we know what α1 is. Plugging

this information we obtain

α2
1 +

λ

d

n∑
i=2

α2
i ≤

n− |S|
n

+
λ

d

and this is the bound on the operator norm we were looking for.

Quantitatively, for some ε, η < 1 such that |S| < εn and λ < ηd, as long as ε − η > 0 we see
that the bound above is strictly less than 1, and so we have exponential decay of the probability
Pr[w0, . . . , wℓ /∈ S].

3 Error-reduction for randomized algorithm

Fix some function f : {0, 1}n → {0, 1}. A computable function A : {0, 1}n × {0, 1}m → {0, 1} is a
randomized algorithm for f if for every x⃗ ∈ {0, 1}n

Pr[A(x⃗, r⃗) = f(x⃗)] ≥ 0.9,

where the probability is taken over all r⃗ ∈ {0, 1}m.

Thus, given m random bits, the algorithm A computes f with error 0.1. The standard way to
reduce the error is to run A(x⃗, r⃗) for many independently chosen r⃗ and then return the majority
vote.

There is a related notion of random computation with 1-sided error. A computable function A :
{0, 1}n × {0, 1}m → {0, 1} is a randomized algorithm (for f) with one-sided error if: for every
x⃗ ∈ {0, 1}n,

� if f(x) = 0, A(x⃗, r⃗) = 0 for every r⃗ ∈ {0, 1}m;

� if f(x) = 1, Pr[A(x⃗, r⃗) = 1] ≥ 0.9.

Once again, the standard way to reduce the error is to run A(x⃗, r⃗) for ℓ independently chosen r⃗,
and then take the “or” of the result:

A(x⃗, r⃗1) ∨A(x⃗, r⃗2) ∨ · · · ∨A(x⃗, r⃗ℓ).

This procedure will reduce the error from 0.1 to (0.1)ℓ, with the price that we now need mℓ random
bits.

Another idea, which costs less random bits, is to use a random walk on expander graphs. In detail,
take G a d-regular graph on 2m vertices labeled by {0, 1}m, which is also λ-absolute expander with

5

λ ≤ 0.01d. Pick w0 ∈ {0, 1}m uniformly at random and take a random walk on G of length ℓ− 1.
Use the vertices of the random walk instead of the independently chosen r⃗. That is, we return

A(x⃗, w0) ∨A(x⃗, w1) ∨ · · · ∨A(x⃗, wℓ).

We think of the set S from the previous section as the subset of {0, 1}m such that A(x⃗, r⃗) returns the
correct result (so we are guaranteed that |S| ≥ 0.9 |{0, 1}m| since the error-rate of A is < 0.1). The
probability that the disjunctive expression above returns the wrong answer (in the case f(x) = 1)
is the same as the probability that w0, . . . , wℓ /∈ S, which according to our estimations from Section
2 scales as (

n− |S|
n

+
λ

d

)ℓ

≈ (0.1 + 0.01)ℓ

(for the parameters we’ve chosen). Thus, we get a comparable error-reduction to iterating the
algorithm. However, in this procedure we’ve spend m random bits to choose w0, and then log d
random bits to choose wi+1 from among the d neighbours of wi. Thus, the total cost of randomness
is m+ ℓ log d bits, an improvement over the mℓ random bits required for ℓ independent choices of
r⃗.

For this procedure to be efficiently computable, we need to produce the expander graph in Poly(m)
time, which is Polylog(|V |). This is a more stringent requirement than what we usually ask of an
“explicit construction” which should produce an expander graph in time Poly(|V |).

Next class we’ll see an “explicit construction” (i.e., in time Poly(|V |)) of expander graphs using
the zigzag product of graphs.

6

Appendix: Fact 0 follows from the spectral theorem for symmetric
matrices

Fact 0. For any symmetric matrix Q,

max
∥u⃗∥=1

⟨Qu⃗,Qu⃗⟩ =
(
max
∥u⃗∥=1

⟨u⃗, Qu⃗⟩
)2

.

Proof. We first prove the claim for the special case of a diagonal matrix D = diag(d1, . . . , dn). Let
d = max{d1, . . . , dn} be the largest eigenvalue. Then, for any u⃗ =

[
u1 u2 · · · un

]
with ∥u⃗∥ = 1,

i.e.,
∑n

i=1 u
2
i = 1, we have

⟨Du⃗,Du⃗⟩ =
n∑

i=1

(diui)
2 ≤ d2

n∑
i=1

u2i = d2.

On the other hand, there is some e⃗i such that ∥De⃗i∥2 = d2. We conclude that

max
∥u⃗∥=1

⟨Qu⃗,Qu⃗⟩ = d2.

Exactly the same reasoning shows that

max
∥u⃗∥=1

⟨u⃗, Qu⃗⟩ = d,

which proves the claim for diagonal matrices.

For an arbitrary real symmetric matrix Q, the spectral theorem says that Q is diagonalizable by
some orthogonal matrix S, which is necessarily an isometry. Thus, D = S−1QS, and for any u⃗
whatsoever we have

∥Du⃗∥ = ∥Qu⃗∥ .

In particular, the operator norm of Q is the same as that of D (the largest eigenvalue of Q). Now,
Q = SDS−1 and since S is orthogonal ST = S−1, so

⟨u⃗, Qu⃗⟩ =
〈
u⃗, SDS−1u⃗

〉
=

〈
S−1u⃗, DS−1u⃗

〉
.

Finally, since S is an isometry, taking the maximum over all u⃗ with ∥u⃗∥ = 1 is the same as taking
the maximum over all S−1u⃗ with

∥∥S−1u⃗
∥∥ = 1 so we see that

max
∥u⃗∥=1

⟨u⃗, Qu⃗⟩ = max
∥u⃗∥=1

⟨u⃗, Du⃗⟩ .

This concludes the proof.

7

