Due: At the end of the semester.
Let $B(x, r)$ denote the ball of radius r around x. Let $\left|B_{n}(r)\right|$ denote the volume of the ball of radius r in $\{0,1\}^{n}$.

1. We will see a very tiny improvement to the Gilbert-Varshamov bound. This predates BCH codes, and also works for codes over larger alphabets.
Let v_{1}, \ldots, v_{r} be a collection of vectors in \mathbb{F}_{2}^{t} such that no $d-1$ of them are linearly dependent. Show that if $B_{r}(d-2)<2^{t}$, then there exists a vector $w \in \mathbb{F}_{2}^{t}$ such that no $d-1$ vectors out of

$$
\left\{v_{1}, \ldots, v_{r}, w\right\}
$$

are linearly dependent.
Use this to show that for all d, for infinitely many n, there exists a linear code $C \subseteq \mathbb{F}_{2}^{n}$ with minimum distance $\geq d$ such that $|C| \geq \frac{2^{n}}{\left|B_{n}(d-2)\right|}$.
2. Let $q>2$ be a prime power (you can restrict to q being a prime if you are not yet comfortable with general finite fields). Generalize the Hamming code over \mathbb{F}_{2} that we saw in class to construct (for suitable n) a distance ≥ 3 error-correcting code $C \subseteq \mathbb{F}_{q}^{n}$ with $|C| \geq \frac{q^{n}}{(q-1) n+1}$. This shows that the volume packing bound is tight even over prime power sized alphabets and $d=3$.
3. (Not to be turned in) Review all your linear algebra, but this time pay attention to which facts hold over finite fields, and which facts don't.
4. (Not to be turned in) Let $x \in\{0,1\}^{n}$. For $r=100, \sqrt{n}, 0.1 n, n / 2,0.9 n$, solve the following problem. Let z be a point picked uniformly at random from $B(x, r)$. Estimate the probability that $\Delta(z, x)=r$.
The answers are: $1-O(1 / n), 1-O(1 / \sqrt{n})$, constant $p \in(0,1), O(1 / \sqrt{n}), 2^{-\Theta(n)}$.
5. (Not to be turned in) Below is a collection of facts/problems related to finite fields. Try to verify them yourself or look them up.
(a) Let p be prime. Let $\mathbb{F}_{p}=\{0,1, \ldots, p-1\}$ along with operations addition and multiplication $\bmod p$. Every integer can be treated as an element of \mathbb{F}_{p} (by taking the remainder after dividing by p).
All of \mathbb{F}_{p} forms a group under addition. The nonzero elements of \mathbb{F}_{p}, denoted \mathbb{F}_{p}^{*} form a group under multiplication. Both groups are commutative.
(b) For each $a \in \mathbb{F}_{p}$, we have $a^{p}=a$. If $a \neq 0$, then $a^{p-1}=1$.
(c) Let $\mathbb{F}_{p}[X]$ be the set of polynomials with \mathbb{F}_{p} coefficients. Then the division theorem holds in $\mathbb{F}_{p}[X]$, and thus every element of $\mathbb{F}_{p}[X]$ can be uniquely factorized into irreducible polynomials.
(d) The remainder theorem holds in $\mathbb{F}_{p}[X]$. Thus $X^{p}-X=\prod_{\alpha \in \mathbb{F}_{p}}(X-\alpha)$.
(e) For each integer d, the number of $a \in \mathbb{F}_{p}^{*}$ satisfying $a^{d}=1$ is at most d. Combining this with the fact that \mathbb{F}_{p}^{*} is commutative, this implies that \mathbb{F}_{p}^{*} is cyclic (i.e., there is an element $g \in \mathbb{F}_{p}^{*}$ such that $\mathbb{F}_{p}^{*}=\left\{1, g, g^{2}, \ldots, g^{p-2}\right\}$.
Not every element of \mathbb{F}_{p}^{*} generates \mathbb{F}_{p}^{*}. Look at the cases $p=7,13$ and find a generator for \mathbb{F}_{p}^{*} in each case.
(f) Suppose p is an odd prime. Then exactly $1 / 2$ the elements of \mathbb{F}_{p}^{*} are perfect squares. If $a \in \mathbb{F}_{p}^{*}$, then $a^{(p-1) / 2}$ equals either 1 or -1 , depending on whether a is a perfect square or not.
(g) Generalize the above to perfect d th powers. Note that if d is relatively prime to $p-1$ then every element of \mathbb{F}_{p}^{*} is a perfect d th power.
(h) Let $f(X)$ be an irreducible polynomial of degree d in $\mathbb{F}_{p}[X]$. We can consider the set $\mathbb{F}_{p}[X] / f(X)$ of polynomials modulo $f(X)$. Every polynomial is equivalent modulo $f(X)$ to a unique polynomial of degree $<d$. Thus there are p^{d} residue classes. Addition and multiplication of polynomials is compatible with reducing mod $f(X)$. Every nonzero element of $\mathbb{F}_{p}[X] / f(X)$ has a multiplicative inverse (this is where irreducibility of $f(X)$ is used). Thus $\mathbb{F}_{p}[X] / f(X)$ is a field of cardinality p^{d}.
The relationship between \mathbb{Z}, the prime p and the field \mathbb{Z} / p is entirely analogous to the relationship between $\mathbb{F}_{p}[X]$, the irreducible $f(X)$ and the field $\mathbb{F}_{p}[X] / f(X)$.
(i) The field $\mathbb{F}_{p}[X] / f(X)$ is a d-dimensional vector space over the field \mathbb{F}_{p}. We denote this field $\mathbb{F}_{p^{d}}$. It is tricky to prove but true that any two fields of cardinality p^{d} are isomorphic fields. Thus there is a unique such field. If n is an integer not of the form p^{d} for p prime, then there does not exist a finite field of cardinality n. Thus whenever we talk of the finite field \mathbb{F}_{q}, we will insist that q be a prime power.
(j) Note that the above construction of $\mathbb{F}_{p^{d}}$ required the existence of an irreducible polynomial of degree d over \mathbb{F}_{p}. Such polynomials exist for every d ! Try to show this.
(k) Construct the fields \mathbb{F}_{8} and \mathbb{F}_{9}.
(l) Note that the field $\mathbb{F}_{p^{d}}$ is not isomorphic to the ring \mathbb{Z} / p^{d}.
(m) Many of the facts you proved about the field \mathbb{F}_{p} also hold for $\mathbb{F}_{p^{d}}$. Polynomials over $\mathbb{F}_{p^{d}}$ can be defined, and they have nice properties. The multiplicative group $\mathbb{F}_{p^{d}} \backslash\{0\}$ is cyclic. Etc. To prove all these properties, you need not use the explicit construction of $\mathbb{F}_{p^{d}}$ described above. It suffices to just use the fact that $\mathbb{F}_{p^{d}}$ is a field of cardinality p^{d}.
(n) $X^{p^{d}}-X=\prod_{\alpha \in \mathbb{F}_{p^{d}}}(X-\alpha)$.
6. Let C be a Reed-Solomon code over \mathbb{F}_{q} with length N and distance D.
(a) Let $c \in C$. Suppose x is a received word obtained from c after r errors and s erasures occur.

Give a polynomial time algorithm, which on input x can recover c, provided:

$$
r+\frac{s}{2}<\frac{D}{2} .
$$

(b) Let $c \in C$. Let $x \in \mathbb{F}_{q}^{N}$ and $u \in[0,1]^{N}$: we will view u_{i} as the amount of "uncertainty" in the symbol x_{i} ($u_{i}=1$ is like an erasure). For each $i \in[N]$, define $e r r_{i}$ by:

$$
\operatorname{err}_{i}= \begin{cases}1-u_{i} / 2 & x_{i} \neq c_{i} \\ u_{i} / 2 & x_{i}=c_{i}\end{cases}
$$

Give a polynomial time algorithm, which on input x and u can recover c, provided:

$$
\sum_{i \in[N]} e r r_{i}<\frac{D}{2}
$$

A hint for this available at the end of the problem set.
(c) Let $C_{i n} \subseteq\{0,1\}^{n}$ be a binary code with q codewords. Let d be the minimum distance of $C_{i n}$. Let V be the concatenated code obtained by concatenating C with $C_{i n}$. Recall that V has minimum distance $\geq D \cdot d$.
Here is an algorithm for decoding V from $\frac{D \cdot d}{2}$ errors.
i. Let $y_{1}, y_{2}, \ldots, y_{N} \in\{0,1\}^{n}$ be the blocks of the received vector y.
ii. Decode each y_{i} from up to $d / 2$ errors to obtain a codeword $c_{i} \in C_{i n}$. Let $a_{i}=$ $\Delta\left(y_{i}, c_{i}\right)$.
iii. Let $x_{i} \in \mathbb{F}_{q}$ be the \mathbb{F}_{q}-symbol corresponding to c_{i}. Let $u_{i}=\frac{a_{i}}{d / 2}$.
iv. Then (x, u) satisfy the hypothesis for the previous part of this problem. Decode this to obtain the codeword c.
Show that this algorithm works.
7. For each $R \in(0,1)$, show that there exist linear codes $C \subseteq \mathbb{F}_{2}^{n}$ such that both C and C^{\perp} meet the Gilbert-Varshamov bound.
8. Covering codes.
(a) A code $C \subseteq\{0,1\}^{n}$ is called a covering code with covering radius r if for every $x \in\{0,1\}^{n}$, there exists some $c \in C$ with $\Delta(x, c) \leq r$.
Let $\rho \in(0,1 / 2)$ be a constant. Show that every covering code $C \subseteq\{0,1\}^{n}$ with covering radius ρn has rate $R \geq 1-H(\rho)-o(1)$.
(b) Show that choosing $2^{R n}$ independent uniform elements of $\{0,1\}^{n}$, if $R \leq 1-H(\rho)+o(1)$, is a covering code with covering radious ρn with high probability.
Thus the the main combinatorial questions for covering codes are much easier than for error-correcting codes.
(c) In fact, one can even construct such covering codes efficiently! Here is the construction.

Let n^{\prime} be an integer. Let R, ρ, ϵ be such that $R=1-H(\rho)+\epsilon$. Let $M=\left(2^{n^{\prime}}\right)^{2^{R n^{\prime}}}$. Let $C_{1}, C_{2}, \ldots, C_{M}$ be an enumeration of $A L L 2^{R n}$-tuples of elements of $\{0,1\}^{n}$.

Let $n=M \cdot n^{\prime}$. Define

$$
C=\left\{\left(x_{1}, \ldots, x_{M}\right) \in\{0,1\}^{n} \mid x_{i} \in C_{i}\right\},
$$

where we identify elements of $\left(\{0,1\}^{M}\right)^{n^{\prime}}$ with $\{0,1\}^{n}$.
Show that C is a covering code with rate R and covering radius $\rho+o(1)$.

Hint for weighted Reed-Solomon decoding: reduce to errors-and-erasures decoding.

