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Due: At the end of the semester.

Let B(x, r) denote the ball of radius r around x. Let |Bn(r)| denote the volume of the ball of radius
r in {0, 1}n.

1. We will see a very tiny improvement to the Gilbert-Varshamov bound. This predates BCH
codes, and also works for codes over larger alphabets.

Let v1, . . . , vr be a collection of vectors in Ft
2 such that no d−1 of them are linearly dependent.

Show that if Br(d− 2) < 2t, then there exists a vector w ∈ Ft
2 such that no d− 1 vectors out

of
{v1, . . . , vr, w}

are linearly dependent.

Use this to show that for all d, for infinitely many n, there exists a linear code C ⊆ Fn
2 with

minimum distance ≥ d such that |C| ≥ 2n

|Bn(d−2)| .

2. Let q > 2 be a prime power (you can restrict to q being a prime if you are not yet comfortable
with general finite fields). Generalize the Hamming code over F2 that we saw in class to
construct (for suitable n) a distance ≥ 3 error-correcting code C ⊆ Fn

q with |C| ≥ qn

(q−1)n+1 .

This shows that the volume packing bound is tight even over prime power sized alphabets
and d = 3.

3. (Not to be turned in) Review all your linear algebra, but this time pay attention to which
facts hold over finite fields, and which facts don’t.

4. (Not to be turned in) Let x ∈ {0, 1}n. For r = 100,
√
n, 0.1n, n/2, 0.9n, solve the following

problem. Let z be a point picked uniformly at random from B(x, r). Estimate the probability
that ∆(z, x) = r.

The answers are: 1−O(1/n), 1−O(1/
√
n), constant p ∈ (0, 1), O(1/

√
n), 2−Θ(n).

5. (Not to be turned in) Below is a collection of facts/problems related to finite fields. Try
to verify them yourself or look them up.

(a) Let p be prime. Let Fp = {0, 1, . . . , p−1} along with operations addition and multiplica-
tion mod p. Every integer can be treated as an element of Fp (by taking the remainder
after dividing by p).

All of Fp forms a group under addition. The nonzero elements of Fp, denoted F∗
p form a

group under multiplication. Both groups are commutative.

(b) For each a ∈ Fp, we have ap = a. If a ̸= 0, then ap−1 = 1.

1



(c) Let Fp[X] be the set of polynomials with Fp coefficients. Then the division theorem holds
in Fp[X], and thus every element of Fp[X] can be uniquely factorized into irreducible
polynomials.

(d) The remainder theorem holds in Fp[X]. Thus Xp −X =
∏

α∈Fp
(X − α).

(e) For each integer d, the number of a ∈ F∗
p satisfying ad = 1 is at most d. Combining

this with the fact that F∗
p is commutative, this implies that F∗

p is cyclic (i.e., there is an
element g ∈ F∗

p such that F∗
p = {1, g, g2, . . . , gp−2}.

Not every element of F∗
p generates F∗

p. Look at the cases p = 7, 13 and find a generator
for F∗

p in each case.

(f) Suppose p is an odd prime. Then exactly 1/2 the elements of F∗
p are perfect squares. If

a ∈ F∗
p, then a(p−1)/2 equals either 1 or −1, depending on whether a is a perfect square

or not.

(g) Generalize the above to perfect dth powers. Note that if d is relatively prime to p − 1
then every element of F∗

p is a perfect dth power.

(h) Let f(X) be an irreducible polynomial of degree d in Fp[X]. We can consider the set
Fp[X]/f(X) of polynomials modulo f(X). Every polynomial is equivalent modulo f(X)
to a unique polynomial of degree < d. Thus there are pd residue classes. Addition and
multiplication of polynomials is compatible with reducing mod f(X). Every nonzero
element of Fp[X]/f(X) has a multiplicative inverse (this is where irreducibility of f(X)
is used). Thus Fp[X]/f(X) is a field of cardinality pd.

The relationship between Z, the prime p and the field Z/p is entirely analogous to the
relationship between Fp[X], the irreducible f(X) and the field Fp[X]/f(X).

(i) The field Fp[X]/f(X) is a d-dimensional vector space over the field Fp. We denote this
field Fpd . It is tricky to prove but true that any two fields of cardinality pd are isomorphic

fields. Thus there is a unique such field. If n is an integer not of the form pd for p prime,
then there does not exist a finite field of cardinality n. Thus whenever we talk of the
finite field Fq, we will insist that q be a prime power.

(j) Note that the above construction of Fpd required the existence of an irreducible polyno-
mial of degree d over Fp. Such polynomials exist for every d! Try to show this.

(k) Construct the fields F8 and F9.

(l) Note that the field Fpd is not isomorphic to the ring Z/pd.
(m) Many of the facts you proved about the field Fp also hold for Fpd . Polynomials over

Fpd can be defined, and they have nice properties. The multiplicative group Fpd \ {0} is
cyclic. Etc. To prove all these properties, you need not use the explicit construction of
Fpd described above. It suffices to just use the fact that Fpd is a field of cardinality pd.

(n) Xpd −X =
∏

α∈F
pd
(X − α).

6. Let C be a Reed-Solomon code over Fq with length N and distance D.

(a) Let c ∈ C. Suppose x is a received word obtained from c after r errors and s erasures
occur.

2



Give a polynomial time algorithm, which on input x can recover c, provided:

r +
s

2
<

D

2
.

(b) Let c ∈ C. Let x ∈ FN
q and u ∈ [0, 1]N : we will view ui as the amount of “uncertainty”

in the symbol xi (ui = 1 is like an erasure). For each i ∈ [N ], define erri by:

erri =

{
1− ui/2 xi ̸= ci

ui/2 xi = ci

Give a polynomial time algorithm, which on input x and u can recover c, provided:∑
i∈[N ]

erri <
D

2
.

A hint for this available at the end of the problem set.

(c) Let Cin ⊆ {0, 1}n be a binary code with q codewords. Let d be the minimum distance
of Cin. Let V be the concatenated code obtained by concatenating C with Cin. Recall
that V has minimum distance ≥ D · d.
Here is an algorithm for decoding V from D·d

2 errors.

i. Let y1, y2, . . . , yN ∈ {0, 1}n be the blocks of the received vector y.

ii. Decode each yi from up to d/2 errors to obtain a codeword ci ∈ Cin. Let ai =
∆(yi, ci).

iii. Let xi ∈ Fq be the Fq-symbol corresponding to ci. Let ui =
ai
d/2 .

iv. Then (x, u) satisfy the hypothesis for the previous part of this problem. Decode this
to obtain the codeword c.

Show that this algorithm works.

7. For each R ∈ (0, 1), show that there exist linear codes C ⊆ Fn
2 such that both C and C⊥

meet the Gilbert-Varshamov bound.

8. Covering codes.

(a) A code C ⊆ {0, 1}n is called a covering code with covering radius r if for every x ∈ {0, 1}n,
there exists some c ∈ C with ∆(x, c) ≤ r.

Let ρ ∈ (0, 1/2) be a constant. Show that every covering code C ⊆ {0, 1}n with covering
radius ρn has rate R ≥ 1−H(ρ)− o(1).

(b) Show that choosing 2Rn independent uniform elements of {0, 1}n, if R ≤ 1−H(ρ)+o(1),
is a covering code with covering radious ρn with high probability.

Thus the the main combinatorial questions for covering codes are much easier than for
error-correcting codes.

(c) In fact, one can even construct such covering codes efficiently! Here is the construction.

Let n′ be an integer. Let R, ρ, ϵ be such that R = 1−H(ρ) + ϵ. Let M = (2n
′
)2

Rn′
. Let

C1, C2, . . . , CM be an enumeration of ALL 2Rn-tuples of elements of {0, 1}n.
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Let n = M · n′. Define

C = {(x1, . . . , xM ) ∈ {0, 1}n | xi ∈ Ci},

where we identify elements of
(
{0, 1}M

)n′
with {0, 1}n.

Show that C is a covering code with rate R and covering radius ρ+ o(1).

Hint for weighted Reed-Solomon decoding: reduce to errors-and-erasures decoding.
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