Topics in Error-Correcting Codes (Fall 2022) University of Toronto Swastik Kopparty

Due: At the end of the semester.

Let B(x, r) denote the ball of radius r around x. Let $|B_n(r)|$ denote the volume of the ball of radius r in $\{0, 1\}^n$.

1. We will see a very tiny improvement to the Gilbert-Varshamov bound. This predates BCH codes, and also works for codes over larger alphabets.

Let v_1, \ldots, v_r be a collection of vectors in \mathbb{F}_2^t such that no d-1 of them are linearly dependent. Show that if $B_r(d-2) < 2^t$, then there exists a vector $w \in \mathbb{F}_2^t$ such that no d-1 vectors out of

$$\{v_1,\ldots,v_r,w\}$$

are linearly dependent.

Use this to show that for all d, for infinitely many n, there exists a linear code $C \subseteq \mathbb{F}_2^n$ with minimum distance $\geq d$ such that $|C| \geq \frac{2^n}{|B_n(d-2)|}$.

2. Let q > 2 be a prime power (you can restrict to q being a prime if you are not yet comfortable with general finite fields). Generalize the Hamming code over \mathbb{F}_2 that we saw in class to construct (for suitable n) a distance ≥ 3 error-correcting code $C \subseteq \mathbb{F}_q^n$ with $|C| \geq \frac{q^n}{(q-1)n+1}$.

This shows that the volume packing bound is tight even over prime power sized alphabets and d = 3.

- 3. (Not to be turned in) Review all your linear algebra, but this time pay attention to which facts hold over finite fields, and which facts don't.
- 4. (Not to be turned in) Let $x \in \{0,1\}^n$. For $r = 100, \sqrt{n}, 0.1n, n/2, 0.9n$, solve the following problem. Let z be a point picked uniformly at random from B(x,r). Estimate the probability that $\Delta(z, x) = r$.

The answers are: $1 - O(1/n), 1 - O(1/\sqrt{n})$, constant $p \in (0, 1), O(1/\sqrt{n}), 2^{-\Theta(n)}$.

- 5. (Not to be turned in) Below is a collection of facts/problems related to finite fields. Try to verify them yourself or look them up.
 - (a) Let p be prime. Let $\mathbb{F}_p = \{0, 1, \dots, p-1\}$ along with operations addition and multiplication mod p. Every integer can be treated as an element of \mathbb{F}_p (by taking the remainder after dividing by p).

All of \mathbb{F}_p forms a group under addition. The nonzero elements of \mathbb{F}_p , denoted \mathbb{F}_p^* form a group under multiplication. Both groups are commutative.

(b) For each $a \in \mathbb{F}_p$, we have $a^p = a$. If $a \neq 0$, then $a^{p-1} = 1$.

- (c) Let $\mathbb{F}_p[X]$ be the set of polynomials with \mathbb{F}_p coefficients. Then the division theorem holds in $\mathbb{F}_p[X]$, and thus every element of $\mathbb{F}_p[X]$ can be uniquely factorized into irreducible polynomials.
- (d) The remainder theorem holds in $\mathbb{F}_p[X]$. Thus $X^p X = \prod_{\alpha \in \mathbb{F}_p} (X \alpha)$.
- (e) For each integer d, the number of a ∈ F^{*}_p satisfying a^d = 1 is at most d. Combining this with the fact that F^{*}_p is commutative, this implies that F^{*}_p is cyclic (i.e., there is an element g ∈ F^{*}_p such that F^{*}_p = {1, g, g², ..., g^{p-2}}. Not every element of F^{*}_p generates F^{*}_p. Look at the cases p = 7, 13 and find a generator for F^{*}_p in each case.
- (f) Suppose p is an odd prime. Then exactly 1/2 the elements of \mathbb{F}_p^* are perfect squares. If $a \in \mathbb{F}_p^*$, then $a^{(p-1)/2}$ equals either 1 or -1, depending on whether a is a perfect square or not.
- (g) Generalize the above to perfect dth powers. Note that if d is relatively prime to p-1 then every element of \mathbb{F}_p^* is a perfect dth power.
- (h) Let f(X) be an irreducible polynomial of degree d in $\mathbb{F}_p[X]$. We can consider the set $\mathbb{F}_p[X]/f(X)$ of polynomials modulo f(X). Every polynomial is equivalent modulo f(X) to a unique polynomial of degree < d. Thus there are p^d residue classes. Addition and multiplication of polynomials is compatible with reducing mod f(X). Every nonzero element of $\mathbb{F}_p[X]/f(X)$ has a multiplicative inverse (this is where irreducibility of f(X) is used). Thus $\mathbb{F}_p[X]/f(X)$ is a field of cardinality p^d . The relationship between \mathbb{Z} , the prime p and the field \mathbb{Z}/p is entirely analogous to the
- relationship between F_p[X], the irreducible f(X) and the field F_p[X]/f(X).
 (i) The field F_p[X]/f(X) is a d-dimensional vector space over the field F_p. We denote this field F_{p^d}. It is tricky to prove but true that any two fields of cardinality p^d are isomorphic fields. Thus there is a unique such field. If n is an integer not of the form p^d for p prime, then there does not exist a finite field of cardinality n. Thus whenever we talk of the
- (j) Note that the above construction of \mathbb{F}_{p^d} required the existence of an irreducible polynomial of degree d over \mathbb{F}_p . Such polynomials exist for every d! Try to show this.
- (k) Construct the fields \mathbb{F}_8 and \mathbb{F}_9 .
- (1) Note that the field \mathbb{F}_{p^d} is not isomorphic to the ring \mathbb{Z}/p^d .

finite field \mathbb{F}_q , we will insist that q be a prime power.

(m) Many of the facts you proved about the field \mathbb{F}_p also hold for \mathbb{F}_{p^d} . Polynomials over \mathbb{F}_{p^d} can be defined, and they have nice properties. The multiplicative group $\mathbb{F}_{p^d} \setminus \{0\}$ is cyclic. Etc. To prove all these properties, you need not use the explicit construction of \mathbb{F}_{p^d} described above. It suffices to just use the fact that \mathbb{F}_{p^d} is a field of cardinality p^d .

(n)
$$X^{p^d} - X = \prod_{\alpha \in \mathbb{F}_{p^d}} (X - \alpha).$$

- 6. Let C be a Reed-Solomon code over \mathbb{F}_q with length N and distance D.
 - (a) Let $c \in C$. Suppose x is a received word obtained from c after r errors and s erasures occur.

Give a polynomial time algorithm, which on input x can recover c, provided:

$$r + \frac{s}{2} < \frac{D}{2}.$$

(b) Let $c \in C$. Let $x \in \mathbb{F}_q^N$ and $u \in [0, 1]^N$: we will view u_i as the amount of "uncertainty" in the symbol x_i ($u_i = 1$ is like an erasure). For each $i \in [N]$, define err_i by:

$$err_i = \begin{cases} 1 - u_i/2 & x_i \neq c_i \\ u_i/2 & x_i = c_i \end{cases}$$

Give a polynomial time algorithm, which on input x and u can recover c, provided:

$$\sum_{i \in [N]} err_i < \frac{D}{2}.$$

A hint for this available at the end of the problem set.

(c) Let $C_{in} \subseteq \{0,1\}^n$ be a binary code with q codewords. Let d be the minimum distance of C_{in} . Let V be the concatenated code obtained by concatenating C with C_{in} . Recall that V has minimum distance $\geq D \cdot d$.

Here is an algorithm for decoding V from $\frac{D \cdot d}{2}$ errors.

- i. Let $y_1, y_2, \ldots, y_N \in \{0, 1\}^n$ be the blocks of the received vector y.
- ii. Decode each y_i from up to d/2 errors to obtain a codeword $c_i \in C_{in}$. Let $a_i = \Delta(y_i, c_i)$.
- iii. Let $x_i \in \mathbb{F}_q$ be the \mathbb{F}_q -symbol corresponding to c_i . Let $u_i = \frac{a_i}{d/2}$.
- iv. Then (x, u) satisfy the hypothesis for the previous part of this problem. Decode this to obtain the codeword c.

Show that this algorithm works.

- 7. For each $R \in (0,1)$, show that there exist linear codes $C \subseteq \mathbb{F}_2^n$ such that both C and C^{\perp} meet the Gilbert-Varshamov bound.
- 8. Covering codes.
 - (a) A code $C \subseteq \{0,1\}^n$ is called a covering code with covering radius r if for every $x \in \{0,1\}^n$, there exists some $c \in C$ with $\Delta(x,c) \leq r$. Let $\rho \in (0,1/2)$ be a constant. Show that every covering code $C \subseteq \{0,1\}^n$ with covering radius ρn has rate $R \geq 1 - H(\rho) - o(1)$.
 - (b) Show that choosing 2^{Rn} independent uniform elements of $\{0, 1\}^n$, if $R \leq 1 H(\rho) + o(1)$, is a covering code with covering radious ρn with high probability. Thus the the main combinatorial questions for covering codes are much easier than for error-correcting codes.
 - (c) In fact, one can even construct such covering codes efficiently! Here is the construction. Let n' be an integer. Let R, ρ, ϵ be such that $R = 1 - H(\rho) + \epsilon$. Let $M = (2^{n'})^{2^{Rn'}}$. Let C_1, C_2, \ldots, C_M be an enumeration of ALL 2^{Rn} -tuples of elements of $\{0, 1\}^n$.

Let $n = M \cdot n'$. Define

$$C = \{ (x_1, \dots, x_M) \in \{0, 1\}^n \mid x_i \in C_i \},\$$

where we identify elements of $(\{0,1\}^M)^{n'}$ with $\{0,1\}^n$. Show that C is a covering code with rate R and covering radius $\rho + o(1)$.

Hint for weighted Reed-Solomon decoding: reduce to errors-and-erasures decoding.