A short proof of the Halpern-Lauchli theorem

Spencer Unger

University of Toronto

November 27, 2025

A write up of this proof is available at: www.math.toronto.edu/sunger/halpern-lauchli.pdf

1. All trees T are countable and finitely branching.

- 1. All trees T are countable and finitely branching.
- 2. We use the word "above" to mean higher in the tree.

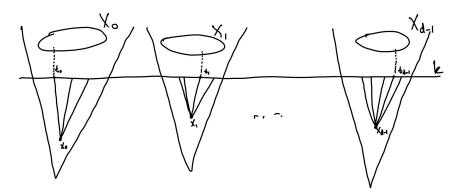
- 1. All trees T are countable and finitely branching.
- 2. We use the word "above" to mean higher in the tree.
- 3. ht(t) is the height of node in the tree.

- 1. All trees T are countable and finitely branching.
- 2. We use the word "above" to mean higher in the tree.
- 3. ht(t) is the height of node in the tree.
- 4. T(k) is the k^{th} level of the tree.

- 1. All trees T are countable and finitely branching.
- 2. We use the word "above" to mean higher in the tree.
- 3. ht(t) is the height of node in the tree.
- 4. T(k) is the k^{th} level of the tree.
- 5. We use $\prod_{i < d} T_i$ and $\prod_{i < d}^{lev} T_i$ to distinguish between the product and the level product.

Definitions, continued

For $\bar{x} \in \prod_{i < d} T_i$ and $k \in \mathbb{N}$ with $k > \max(ht(x_i))$, sets $X_i \subseteq T_i$ for i < d form a $k - \bar{x}$ -dense matrix if for all $\bar{t} \in \prod_{i < d} T_i(k)$ above \bar{x} there is $\bar{y} \in \prod_{i < d} X_i$ above \bar{t} .



HL involving dense matrices

Definition (SD_d)

For every coloring $c: \prod_{i < d} T_i \to r$, there are \bar{x} and $k \in \mathbb{N}$ such that there is a monochromatic $k-\bar{x}$ -dense matrix.

HL involving dense matrices

Definition (SD_d)

For every coloring $c: \prod_{i < d} T_i \to r$, there are \bar{x} and $k \in \mathbb{N}$ such that there is a monochromatic $k-\bar{x}$ -dense matrix.

Definition (DS_d)

For every coloring $c: \prod_{i < d} T_i \to r$, there is \bar{x} such that for all $k \in \mathbb{N}$ there is a monochromatic $k - \bar{x}$ -dense matrix.

HL involving strong subtrees

For a tree T, a subset $S \subseteq T$ is a strong subtree if there is $A \subseteq \mathbb{N}$ infinite such that:

- 1. For all $s \in S$, $s \in T(n)$ for some $n \in A$ and for all $n \in A$, $S \cap T(n) \neq \emptyset$.
- 2. If m < n are consecutive elements of A and $s \in S \cap T(m)$, then every immediate successor of s in T has a unique extension in $S \cap T(n)$.

We call A the level set of S.

HL involving strong subtrees

For a tree T, a subset $S \subseteq T$ is a strong subtree if there is $A \subseteq \mathbb{N}$ infinite such that:

- 1. For all $s \in S$, $s \in T(n)$ for some $n \in A$ and for all $n \in A$, $S \cap T(n) \neq \emptyset$.
- 2. If m < n are consecutive elements of A and $s \in S \cap T(m)$, then every immediate successor of s in T has a unique extension in $S \cap T(n)$.

We call A the level set of S.

Definition (SS_d)

For every coloring $c:\prod_{i< d}^{lev}T_i\to r$, there are strong subtrees $S_i\subseteq T_i$ with the same level set such that c is constant on $\prod_{i< d}^{lev}S_i$.

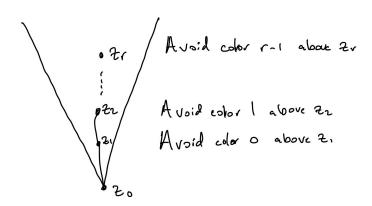
Workflow of the proof

- 1. Prove SD_1 .
- 2. For all d, SD_d implies DS_d .
- 3. For all d, DS_d implies SS_d .
- 4. For all d, DS_d implies SD_{d+1} .

As listed it looks like there is some redundancy but SS_d will be used in the proof of item (4).

Proof of SD₁

Otherwise, for all $x \in T$ and for all i < r there is y > x such that c avoids color i above x.



A matrix is *level* if all sets in the matrix are contained in the same level.

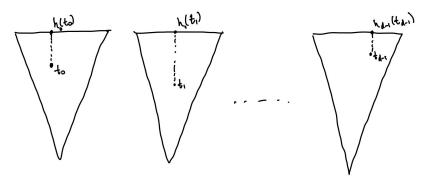
1. By compactness, for a fixed r there is l such that for all $c: \prod_{i < d} T_i \upharpoonright l \to r$ there is a $k - \bar{x}$ -dense matrix.

A matrix is *level* if all sets in the matrix are contained in the same level.

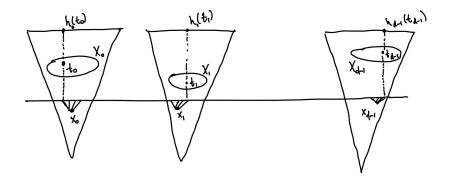
- 1. By compactness, for a fixed r there is l such that for all $c: \prod_{i < d} T_i \upharpoonright l \to r$ there is a $k \bar{x}$ -dense matrix.
- 2. For each $t \in T_i$, pick $h_i(t) \in T_i(I)$ above t. Define $c^* : \prod_{i < d} T_i \upharpoonright I \to r$, by $c^*(t_i \mid i < d) = c(h(t_i) \mid i < d)$.

A matrix is *level* if all sets in the matrix are contained in the same level.

- 1. By compactness, for a fixed r there is l such that for all $c: \prod_{i < d} T_i \upharpoonright l \to r$ there is a $k \bar{x}$ -dense matrix.
- 2. For each $t \in T_i$, pick $h_i(t) \in T_i(l)$ above t. Define $c^* : \prod_{i < d} T_i \upharpoonright l \to r$, by $c^*(t_i \mid i < d) = c(h(t_i) \mid i < d)$.



It follows that if X_i is a monochromatic $k-\bar{x}$ -dense matrix for c^* , then $h_i[X_i]$ is a monochromatic $k-\bar{x}$ -dense level matrix for c.

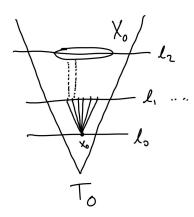


1. We argue by contradiction. Suppose that for every \bar{x} there is $k_{\bar{x}}$ such that for all $k \geq k_{\bar{x}}$ there is no $k-\bar{x}$ -dense matrix.

- 1. We argue by contradiction. Suppose that for every \bar{x} there is $k_{\bar{x}}$ such that for all $k \geq k_{\bar{x}}$ there is no $k-\bar{x}$ -dense matrix.
- 2. Construct by induction a sequence of levels ℓ_n with the property that $\ell_{n+1} > k_{\bar{x}}$ for all \bar{x} with levels at most ℓ_n .

- 1. We argue by contradiction. Suppose that for every \bar{x} there is $k_{\bar{x}}$ such that for all $k \geq k_{\bar{x}}$ there is no $k-\bar{x}$ -dense matrix.
- 2. Construct by induction a sequence of levels ℓ_n with the property that $\ell_{n+1} > k_{\bar{x}}$ for all \bar{x} with levels at most ℓ_n .
- 3. Let $L = \{\ell_n \mid n \in \mathbb{N}\}$ and apply SD_d to the obvious restriction of the coloring of $\prod_{i < d} T_i$ to levels in L. Any $\ell \bar{x}$ -dense matrix for this coloring, gives a dense matrix for the original coloring that contradicts the definition of $k_{\bar{x}}$.

- 1. We argue by contradiction. Suppose that for every \bar{x} there is $k_{\bar{x}}$ such that for all $k \geq k_{\bar{x}}$ there is no $k-\bar{x}$ -dense matrix.
- 2. Construct by induction a sequence of levels ℓ_n with the property that $\ell_{n+1} > k_{\bar{x}}$ for all \bar{x} with levels at most ℓ_n .
- 3. Let $L = \{\ell_n \mid n \in \mathbb{N}\}$ and apply SD_d to the obvious restriction of the coloring of $\prod_{i < d} T_i$ to levels in L. Any ℓ - \bar{x} -dense matrix for this coloring, gives a dense matrix for the original coloring that contradicts the definition of $k_{\bar{x}}$.



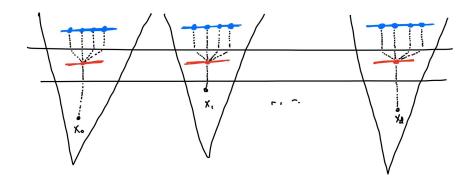
DS_d implies SS_d

A straightforward inductive construction. Let \bar{x} witness DS_d with level matrices for a coloring $\prod_{i< d}^{lev} T_i \to r$. Then for each k we get a color for the $k-\bar{x}$ -dense matrix. We can assume this color is constant for all k.

DS_d implies SS_d

A straightforward inductive construction. Let \bar{x} witness DS_d with level matrices for a coloring $\prod_{i < d}^{lev} T_i \to r$. Then for each k we get a color for the k- \bar{x} -dense matrix. We can assume this color is constant for all k.

Construct inductively as follows:



DS_d implies SD_{d+1}

Let $c: \prod_{i \leq d} T_i \to r$ be a coloring. For each $t \in T_d$, define $c_t: \prod_{i < d} \overline{T_i} \to r$ by $c_t(\overline{x}) = c(\overline{x} \frown t)$. By a fusion argument arrange the following

DS_d implies SD_{d+1}

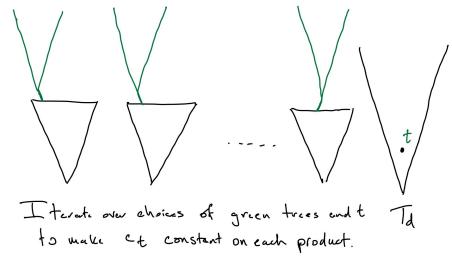
Let $c: \prod_{i \leq d} T_i \to r$ be a coloring. For each $t \in T_d$, define $c_t: \prod_{i < d} T_i \to r$ by $c_t(\bar{x}) = c(\bar{x} \frown t)$. By a fusion argument arrange the following

Claim

There are strong subtrees $S_i \subseteq T_i$ with a common level set such that for all $t \in T_d$ and all $\bar{x} \in \prod_{i < d}^{lev} S_i$ with $ht(\bar{x}) \ge ht(t)$, c_t is constant on the product of S_i above \bar{x} .

Picture of the proof of the claim

At the inductive step we have fixed d finite strong subtrees and we want to restrict the trees above.



Pause for a lemma

Lemma

Let T be an infinite, finitely branching tree and $g:[T] \to \mathbb{N}$ be a coloring. There are $t \in T$, a dense subset $D \subseteq T \upharpoonright t$ and $j \in \mathbb{N}$ such that for all $s \in D$, there is $b \in [T]$ such that $s \in b$ and g(b) = j.

Pause for a lemma

Lemma

Let T be an infinite, finitely branching tree and $g:[T] \to \mathbb{N}$ be a coloring. There are $t \in T$, a dense subset $D \subseteq T \upharpoonright t$ and $j \in \mathbb{N}$ such that for all $s \in D$, there is $b \in [T]$ such that $s \in b$ and g(b) = j.

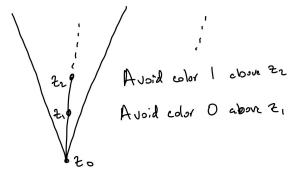
Otherwise, we can inductively build a branch which is not colored.

Pause for a lemma

Lemma

Let T be an infinite, finitely branching tree and $g:[T] \to \mathbb{N}$ be a coloring. There are $t \in T$, a dense subset $D \subseteq T \upharpoonright t$ and $j \in \mathbb{N}$ such that for all $s \in D$, there is $b \in [T]$ such that $s \in b$ and g(b) = j.

Otherwise, we can inductively build a branch which is not colored.



DS_d implies SD_{d+1} , continued

Define a family of colorings $f_b: \prod_{i< d}^{lev} S_i \to r$ for $b \in [T_d]$, by $f_b(\bar{x}) = c(\bar{x} \frown y)$ where y is the unique element of b of height $ht(\bar{x})$.

DS_d implies SD_{d+1} , continued

Define a family of colorings $f_b:\prod_{i< d}^{lev}S_i\to r$ for $b\in [T_d]$, by $f_b(\bar{x})=c(\bar{x}\frown y)$ where y is the unique element of b of height $ht(\bar{x})$.

For each $b \in [T_d]$, using DS_d with level matrices we have \bar{x}_b and $i_b < r$. Now $b \mapsto (\bar{x}_b, i_b)$ is a countable coloring, so by the previous lemma we have $t \in T_d$ and dense $D \subseteq T_d \upharpoonright t$ together with constant value \bar{x}^* and $i^* < r$.

The end of the proof

We construct a monochromatic k-($\bar{x}^* \sim t$)-dense matrix where k is the maximum of the heights of x_i^* and t.

The end of the proof

We construct a monochromatic k- $(\bar{x}^* \cap t)$ -dense matrix where k is the maximum of the heights of x_i^* and t. We use the following picture:

