
This is a sketchy write up of selected homework exercises from the
quarter. Many of the solutions have details that you will need to fill
in. The upshot is that you’ll need to fill in the details if I ask you the
question on the exam.

Homework 1 problem 7. Our notation for the set of finite sequence
of natural numbers is ω<ω. We can write ω<ω =

⋃
n<ω ω

n where ωn is
the set of sequences of natural numbers of length n. (We’re not using
ordinal exponentiation here.) It is enough to show that ωn is countable
for every n < ω.

We can do this by induction. We know that ω is countable. So
assume that ωn is countable for some n < ω. ωn+1 has the same
cardinality as ωn×ω. The latter set can be written as

⋃
k<ω ω

n×{k},
hence is countable.

Homework 1 problem 8. Let P be the set of polynomials with integer
coefficients. Define a function f : ω<ω → P by f(s) = s(0) + s(1)x +
s(2)x2 + . . . s(n− 1)xn−1 where s : n→ ω. Clearly f is a surjection, so
P is countable. For each p ∈ P , let Rp be the finite set of roots of p.
Now {x | x is algebraic } =

⋃
p∈P Rp, hence it is countable.

Notice that in the last two problems we used that a countable union
of countable sets is countable a lot.

Homework 2 problem 4. Suppose that A ⊆ W0 ×W1 is nonempty.
Consider A1 = {w ∈ W1 | there is w′ ∈ W0 such that (w′, w) ∈ A}. A1

is a nonempty subset of W1 hence has a <1-least element. We call it
w1. Consider A0 = {w ∈ W0 | (w,w1) ∈ A}. A0 is a nonempty subset
of W0, hence it has a <0-least element which we call w0. Now check
that (w0, w1) is the least element of A.

Homework 3 problem 3. We will prove the special case when (W,<)
is a well-ordering. This shows that every well-ordered set is isomorphic
to an ordinal. Let (W,<) be a well ordering and go by transfinite
induction to define a function f with domain W . Suppose that we
have defined f � W<x for some x ∈ W . Define f(x) = {f(y) | y < x}.
This finishes the definition of f . Now prove by transfinite induction
that for all x ∈ W , f(x) is an ordinal. Further show that the range of
f is an ordinal α. This shows that (W,<) ' (α,∈).

Homework 4 problem 1. It is a little tricky to prove that the described
ordering is a well-ordering without a picture. Try to draw one for
yourself as you read the proof. Let A ⊆ ℵβ×ℵβ be nonempty. Consider
the set {max(a) | a ∈ A} (recall that elements of A are pairs and
max(a) just picks the coordinate which is bigger). This has a least
element, call it m. Now let A0 = {a ∈ A | max(a) = m}. We know
that the least element of A must come from A0. Now consider the set
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{γ | γ is the first coordinate of some a ∈ A0}. This set is nonempty
hence has a least element, which we call γ∗. Now we let A1 = {a ∈ A0 |
the first coordinate of a is γ∗}. Next we consider the set {δ | δ is the
second coordinate of some a ∈ A1}. This set has a least element which
we call δ∗. Now prove that (δ∗, γ∗) is the least element of A.

For the rest of the exercise, we focus on part (c). Suppose that
π : ℵβ×ℵβ → η is an isomorphism and assume for a contradiction that
η > ℵβ. Then there is a pair (γ, δ) ∈ ℵβ × ℵβ such that π(γ, δ) = ℵβ.
Since π is a bijection it follows that {(γ′, δ′) | (γ′, δ′) < (γ, δ)} has
cardinality ℵβ. Prove that by the induction hypothesis the size of this
set is ℵα where β = α + 1. This is a contradiction.

Homework 4 problem 7. Recall that a function f is continuous if and
only if for every open subset U of the codomain, f−1U is open in the
domain. The f we are considering goes from ωω to 2ω. It is enough
to show that for every s ∈ 2<ω, f−1Ns is open in ωω. Suppose that
x ∈ f−1Ns. We need to find t ∈ ω<ω such that x ∈ Nt and Nt ⊆ f−1Ns.
Note f(x) is determined bit by bit from x, so choose n large enough so
that the sum of the first n natural numbers appearing in x is greater
than the length of s. Now let t = x � n and prove that x ∈ Nt and
Nt ⊆ f−1Ns. I will leave the proof that f is injective to you.

Homework 5 problem 3. Let [a, b] be an interval so that {n | xn ∈
[a, b]} ∈ U . Consider the intervals I0 = [a, a+b

2
] and I1 = [a+b

2
, b]. Now

either {n | xn ∈ I0} ∈ U or {n | xn ∈ I1} ∈ U since U is an ultrafilter.
So we managed to shrink the interval by 1/2 while maintaining that the
set of indices of xn in the interval is in U . Use induction to repeat this
ω many times and find shrinking sequence of closed intervals. Show
that these intervals converge to a point x and show that x is limU xn.

Homework 5 problem 4. If U = {A ⊆ ω | k ∈ A}, then limU xn = xk.
Homework 5 problem 5. (a) is easy. (b) follows from (c) and (a)

with A = ∅. For (c) you essentially need to show that if xn ≤ yn for all
n < ω, then limU xn ≤ limU yn. For (d) you need show that if xn and
yn are sequences, then limU xn + yn = limU xn + limU yn.

Homework 5 problem 6. There were too many n’s in this problem.
Suppose that k ∈ N. Consider the following line of algebra:

lim
U

|A ∩ [−n, n]|
|[−n, n]|

−lim
U

|A+ k ∩ [−n, n]|
|[−n, n]|

= lim
U

|A ∩ [−n, n]| − |A+ k ∩ [−n, n]|
|[−n, n]|

This uses the fact about sums of sequences you proved before. Now no-
tice that (the absolute value of) the top of the final fraction is bounded
above by k. This is because shifting A by k can only move k elements
in to (or possibly out of) [−n, n]. So the limit is roughly of the form
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k
2n+1

which goes to zero as n goes to infinity. Hence it goes to zero
“along the ultrafilter”.

Homework 5 problem 7. Suppose that there is such a partition
A1, . . . An, B1, . . . Bm. Now we have the following using properties of µ:

1 = µ(Z) =
n∑
i=1

µ(Ai) +
m∑
i=1

µ(Bi)

So the sum of the measures of the A’s is strictly between 0 and 1. On
the other hand, by the previous problem we have

1 = µ(Z) =
n∑
i=1

µ(ai + Ai) =
n∑
i=1

µ(Ai)

So the sum of the measure of the A’s must be 1. This is a contradiction.
Homework 6 problem 1. We did this using ultrafilters, so see if you

can give the ultrafilter proof. For the König infinity lemma proof, let
T = {f | f : n→ k is a k-coloring of Gn for some n < ω} and order T
by end extension. In particular f < g if dom(f) ⊆ dom(g) and for all
i ∈ dom(f), f(i) = g(i). Prove that T is an infinite tree where every
element has finitely many immediate successors. Show that an infinite
path in T corresponds to a k-coloring of G.

Homework 6 problem 2. Assume KIL(κ) and for all µ < κ, 2µ < κ.
Let f : [κ]2 → 2. Construct a function G : κ → 2<κ by transfinite
induction. Define G(0) = ∅. Suppose that we have constructed G � γ
for some γ < κ. Define G(γ) to be the unique s ∈ 2<κ such that for all
i ∈ dom(s), s(i) is f({G−1(s � i), γ}). You should check that such an
s actually exists.

Prove that T = G“κ is a subtreeof 2<κ ordered by end extension.
Prove that for all µ < κ, 2µ < κ implies that the levels of T have size
less than κ. By KIL(κ) there is a cofinal branch b through T . Let
B : κ→ 2 be the function determined by b. As for the proof of infinite
Ramsey theorem, prove that there is an i ∈ 2 so that A = {α < κ |
B(α) = i} has size κ. Prove {G−1(B � α) | α ∈ A} is our desired set.

Homework 6 problem 3. For (a) consider the set S = {s ∈ 2<ω |
Ns ⊆ Ui for some i}. Prove that S works.

For (b), let S∗ = {t | t extends s for some s ∈ S}. Prove that if
there is a finite S∗0 ⊆ S∗ such that

⋃
s∈S∗

0
NS = 2ω, then there is a finite

S0 ⊆ S such that
⋃
s∈S0

Ns = 2ω. So just rename S∗ as S.
For (c), assume that T is finite and prove that there is a finite S0 ⊆ S

as above.
If you’ve understood everything so far, then (d) should be straight-

forward.
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Homework 7 problem 1. Prove using homework 4 problem 1 that for
any cardinal κ, the union of κ many sets of cardinality κ has cardinality
κ. To show that cf(κ+) = κ+, let f : κ → κ+. Prove that

⋃
α<κ f(α)

is an ordinal of cardinality κ. Call this ordinal γ. Prove that f is not
cofinal as witnessed by γ.

Homework 7 problem 2. Prove that if α < β < γ and f : α→ β and
g : β → γ are increasing and cofinal, then g ◦ f is a cofinal function
from α to γ. Use this to finish the problem.

Homework 7 problem 3. Consider the set T =
⊔
α<κ α ∪ {?} (re-

member homework 2?). Define an ordering on T where ? is the least
element and δ <T γ if and only if γ and δ “come from the same ordinal
in the disjoint union” and δ < γ. Prove that T has no cofinal branch.

Homework 7 problem 4. There was a small correction on this ex-
ercise. κ should be a regular cardinal. Let T ∗ be the set of finite
sequences s where if n is the domain of s, then for all i < n− 1, s(i) is
an ordinal less than κ and s(n−1) is an element of T from the previous
exercise. For two such sequences s and t we write s < t if and only if
dom(s) < dom(t), for all i < dom(s)− 1, s(i) = t(i) and s(dom(s)− 1)
is either ? or it is in the t(dom(s)− 1)-th ordinal of the disjoint union
defining T .

Prove that this tree is normal and has height κ.
Homework 7 problem 5. s < t means that dom(s) is a proper subset

of dom(t) and for all α ∈ dom(s), s(α) = t(α). In particular if γs is the
maximum element of the domain of s and γt is the maximum element
of the domain of t, then γs < γt and max(s) = s(γs) = t(γs) < t(γt) =
max(t).

Homework 7 problem 6. Assume the continuum hypothesis. Let X
be a set of size ω1. We claim that the set Y = {A ⊆ X | A is countable
} has size ω1. It is enough to find an injection from Y into a set of
cardinality ω1. Let Z = {(α,A) | A ⊆ α}. Prove that Z has size ω1

using the continuum hypothesis. Define an injection f : Y → Z by
f(A) = (α,A) where α is the least upper bound of A.

For the construction, Suppose that L is a linear order of size ω1.
Using the claim we just proved, there is an enumeration (Aα, Bα) for
α < ω1 of all pairs (A,B) where A and B are countable subsets of L
where every element of A is below every element of B.

Define a linear order L′ with L′ ⊇ L having the property that for
every α < ω1 there is an l′ ∈ L′ such that l′ is above every element of
Aα and below every element of Bα.

Now go by transfinite induction. Let L0 be any linear order of size ℵ1.
Assuming that we have defined Lα for some α < ω1, let Lα+1 = (Lα)′.
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For the limit step, if we have Lα for all α < γ for some limit γ, then
we set Lγ =

⋃
α<γ with the natural ordering.

Prove that Lω1 is a linear order of size ω1 with the desired property.
Homework 7 problem 9. Don’t worry about this one.
Homework 7 problem 10. Let C = {γ < κ | f“γ ⊆ γ}. Closed is

straightforward. Suppose that C ∩ γ is unbounded. We want to prove
that f“γ ⊆ γ. Let α < γ and find β ∈ C ∩ γ above α. It follows that
f(α) < β by the definition of C. So f“γ ⊆ γ.

Let α < κ. We want to find γ > α with γ ∈ C. Let α0 = α. Suppose
that we have defined αn for some n < ω. Let αn+1 be the least upper
bound for the set f“αn. Why is αn+1 < κ?

Let γ be the least upperbound for {αn | n < ω}. Prove that γ ∈ C.
Homework 7 problem 11. Suppose that for every ordinal α < ω1,

the train is not empty at stage α. Define a function f : ω1 → ω1 by
f(α) is the unique station (ordinal) where the passenger getting off at
stage α got on the train. Clearly for all α < ω1, f(α) < α. By Fodor’s
lemma there is a stationary set S ⊆ ω1 on which f is constant. Get a
contradiction from this.


