This is the seventh homework for Math 114s in the winter quarter of 2016. It is due Friday March 11th in class.

- (1) Prove that for a cardinal κ , κ^+ is regular.
- (2) Prove that $cf(\alpha)$ is a regular cardinal, that is $cf(cf(\alpha)) = cf(\alpha)$.
- (3) Prove that if κ is singular, then $KIL(\kappa)$ is false.
- (4) Let κ be an infinite cardinal. Prove that there is a tree of height κ with no cofinal branch.
- (5) We say that a tree T is normal if for every $\alpha < \beta$ below the height of T and every $t \in Lev_{\alpha}T$, there is an $s \in Lev_{\beta}T$ such that s > t. Let $\kappa > \omega$ be a regular cardinal. Prove that there is a normal tree of height κ with no cofinal branch.
- (6) Let T be the tree of height ω_1 with countable levels and no cofinal branch that we constructed in class. Define a function $f: T \to \mathbb{Q}$ by $f(t) = \max t$. Show that if s < t in T, then f(s) < f(t).
- (7) Let T be a tree of height ω_1 . Suppose that there is a function $f: T \to \mathbb{Q}$ such that if s < t, then f(s) < f(t). Prove that T has no cofinal branch.
- (8) Assume the continuum hypothesis. Prove that there is a linear order (L, <) of size ω_1 such that for any countable A, B subsets of L such that every element of A is less than every element of B, there is an $l \in L$ which is above every element in A and below every element in B.
- (9) Assume the continuum hypothesis. Prove that KIL(ω₂) is false. Hint: Try to repeat the argument from proving that KIL(ω₁) is false, but using the linear order from the previous exercise in place of Q. Hint 2: Break up the limit step into cases based on the cofinality of the limit ordinal.
- (10) Let $f : \kappa \to \kappa$. Show that the set $\{\gamma < \kappa \mid f \colon \gamma \subseteq \gamma\}$ is a club.
- (11) Suppose that there is a train which stops at stations indexed by each ordinal $\alpha < \omega_1$ in order. At each stop 1 person gets off and ω many people get on. Show that there is an ordinal $\gamma < \omega_1$ where the train is empty when it stops (before the passenger exchange) at station γ .