This is the fifth homework for Math 114s in the winter quarter of 2016. It is due Wednesday February 17th in class.

Do the following problems.

- (1) If U is an ultrafilter and $A \cup B \in U$, then either $A \in U$ or $B \in U$.
- (2) Let U be an ultrafilter on X and $f: X \to Y$. Show that $f_*(U) = \{A \subseteq Y \mid f^{-1}(A) \in U\}$ is an ultrafilter.
- (3) Let U be an ultrafilter on ω and let $\langle x_n | n < \omega \rangle$ be a sequence of real numbers. We write $\lim_U x_n = x$ if and only if for every $\epsilon > 0$ there is $A \in U$ such that for all $n \in A$, $|x_n x| < \epsilon$.

Prove that for every bounded sequence $\langle x_n \mid n < \omega \rangle$ there is a unique x such that $\lim_U x_n = x$.

- (4) Suppose that U is a principal ultrafilter on ω and $\langle x_n \mid n < \omega \rangle$ is a sequence of real numbers. What is $\lim_U x_n$?
- (5) Let U be a nonprincipal ultrafilter on ω . For $A \subseteq \mathbb{Z}$ define

$$\mu(A) = \lim_{U} \frac{|A \cap [-n, n]|}{|[-n, n]|}.$$

Prove the following properties about μ .

- (a) $\mu(\emptyset) = 0$ and $\mu(\mathbb{Z}) = 1$.
- (b) For all $A \subseteq \mathbb{Z}$, $\mu(A) \ge 0$.
- (c) If $A \subseteq B \subseteq \mathbb{Z}$, then $\mu(A) \leq \mu(B)$.
- (d) If $A, B \subseteq \mathbb{Z}$ and $A \cap B = \emptyset$, then $\mu(A \cup B) = \mu(A) + \mu(B)$.
- Hint: Be careful with the properties of $\lim_{U}!$
- (6) Let μ be as in the previous exercise. For $n \in \mathbb{Z}$ and $A \subseteq \mathbb{Z}$ define $n + A = \{n + a \mid a \in A\}$. Prove that for all $n \in \mathbb{Z}$ and $A \subseteq \mathbb{Z}$, $\mu(A) = \mu(n + A)$.
- (7) Use the properties of μ that you just proved to show that there is no partition $\{A_1, \ldots, A_n, B_1, \ldots, B_m\}$ of \mathbb{Z} with associated integers a_1, \ldots, a_n and b_1, \ldots, b_m such that $\mathbb{Z} = a_1 + A_1 \cup \cdots \cup a_n + A_n = b_1 + B_1 \cup \cdots \cup b_m + B_m$. Recall that a $\{A_1, \ldots, A_n, B_1, \ldots, B_m\}$ partitions \mathbb{Z} if any two of the sets are disjoint and the union of all of them is \mathbb{Z} .