This is the fourth homework for Math 114s in the winter quarter of 2016. It is due Monday February 8th in class.
(1) Recall that a cardinal is a set of the form $|A|$ for some set A. If κ is a cardinal, then we write κ^{+}for the least cardinal greater than κ. Read Proposition 12.29 from the book.

In this exercise you will show that for all ordinals $\alpha,\left|\aleph_{\alpha} \times \aleph_{\alpha}\right|=\aleph_{\alpha}$.
(a) Check the case when $\alpha=0$.
(b) Check the limit step, that is assume that the statement is true for all $\beta<\alpha$ and prove it for α.
(c) The successor step. Let $\beta=\alpha+1$ and assume that $\left|\aleph_{\alpha} \times \aleph_{\alpha}\right|=\aleph_{\alpha}$. Define an ordering on $\aleph_{\beta} \times \aleph_{\beta}$ by $(\gamma, \delta)<\left(\gamma^{\prime}, \delta^{\prime}\right)$ if

$$
\begin{aligned}
& \text { either } \max \{\gamma, \delta\}<\max \left\{\gamma^{\prime}, \delta^{\prime}\right\} \text {, } \\
& \text { or } \max \{\gamma, \delta\}=\max \left\{\gamma^{\prime}, \delta^{\prime}\right\} \text { and } \gamma<\gamma^{\prime} \text {, } \\
& \text { or } \max \{\gamma, \delta\}=\max \left\{\gamma^{\prime}, \delta^{\prime}\right\}, \gamma=\gamma^{\prime} \text { and } \delta<\delta^{\prime}
\end{aligned}
$$

Show that this is a well ordering. By a previous exercise, we know that this well-ordering is isomorphic by a function π to an ordinal η. Show by contradiction that $\eta=\aleph_{\beta}$. Hint: Use the induction assumption!
(2) In a topological space X, we say that $x_{n} \rightarrow x$ as $n \rightarrow \infty$ if for every open U with $x \in U$, there is an $N<\omega$ such that for all $n \geq N, x_{n} \in U$. Suppose that X is metrizable and prove that $x_{n} \rightarrow x$ as $n \rightarrow \infty$ if and only if for all $\epsilon>0$ there is an $N<\omega$ such that for all $n \geq N, d\left(x_{n}, x\right)<\epsilon$.
(3) Let X and Y be metrizable topological spaces. Prove that $f: X \rightarrow Y$ is continuous (as defined in class) if and only if for every sequence x_{n} for $n<\omega$ if $x_{n} \rightarrow x$ as $n \rightarrow \infty$, then $f\left(x_{n}\right) \rightarrow f(x)$ as $n \rightarrow \infty$.
(4) In 2^{ω} consider the open set N_{s} for some $s \in 2^{<\omega}$, show that N_{s} is closed.
(5) Find sequence s_{n} for $n<\omega$ in $2^{<\omega}$ such that for all $n<\omega$, $\operatorname{dom}\left(s_{n}\right)=n$ and $\left\{s_{n}^{\widehat{n}} \overline{0} \mid n<\omega\right\}$ is dense. Hint: Work by induction using a bijection between $2^{<\omega}$ and ω.
(6) Note that $2^{\omega} \subseteq \omega^{\omega}$. Show that 2^{ω} is closed in the topology on ω^{ω}.
(7) Define a function $f: \omega^{\omega} \rightarrow 2^{\omega}$ by $f(x)$ is the unique $z \in 2^{\omega}$ with infinitely many 1's such that the $n^{t h}$ block of 0 's has length $x(n)$. So for example if $x(n)=n$ for all $n<\omega$, then $f(x)=101001000100001 \ldots$. Show that f is continuous and injective. Show that the range of f is a countable intersection of open sets.
(8) Show that the function f from Corollary 2.14 in the book is continuous.

