This is the fourth homework for Math 114s in the winter quarter of 2016. It is due Monday February 8th in class.

(1) Recall that a cardinal is a set of the form |A| for some set A. If κ is a cardinal, then we write κ^+ for the least cardinal greater than κ . Read Proposition 12.29 from the book.

In this exercise you will show that for all ordinals α , $|\aleph_{\alpha} \times \aleph_{\alpha}| = \aleph_{\alpha}$.

- (a) Check the case when $\alpha = 0$.
- (b) Check the limit step, that is assume that the statement is true for all β < α and prove it for α.</p>
- (c) The successor step. Let $\beta = \alpha + 1$ and assume that $|\aleph_{\alpha} \times \aleph_{\alpha}| = \aleph_{\alpha}$. Define an ordering on $\aleph_{\beta} \times \aleph_{\beta}$ by $(\gamma, \delta) < (\gamma', \delta')$ if
 - either $\max\{\gamma, \delta\} < \max\{\gamma', \delta'\},\$
 - or $\max\{\gamma, \delta\} = \max\{\gamma', \delta'\}$ and $\gamma < \gamma'$,
 - or $\max\{\gamma, \delta\} = \max\{\gamma', \delta'\}, \gamma = \gamma' \text{ and } \delta < \delta'$

Show that this is a well ordering. By a previous exercise, we know that this well-ordering is isomorphic by a function π to an ordinal η . Show by contradiction that $\eta = \aleph_{\beta}$. Hint: Use the induction assumption!

- (2) In a topological space X, we say that $x_n \to x$ as $n \to \infty$ if for every open U with $x \in U$, there is an $N < \omega$ such that for all $n \ge N$, $x_n \in U$. Suppose that X is metrizable and prove that $x_n \to x$ as $n \to \infty$ if and only if for all $\epsilon > 0$ there is an $N < \omega$ such that for all $n \ge N$, $d(x_n, x) < \epsilon$.
- (3) Let X and Y be metrizable topological spaces. Prove that $f : X \to Y$ is continuous (as defined in class) if and only if for every sequence x_n for $n < \omega$ if $x_n \to x$ as $n \to \infty$, then $f(x_n) \to f(x)$ as $n \to \infty$.
- (4) In 2^{ω} consider the open set N_s for some $s \in 2^{<\omega}$, show that N_s is closed.
- (5) Find sequence s_n for $n < \omega$ in $2^{<\omega}$ such that for all $n < \omega$, dom $(s_n) = n$ and $\{s_n \bar{0} \mid n < \omega\}$ is dense. Hint: Work by induction using a bijection between $2^{<\omega}$ and ω .
- (6) Note that $2^{\omega} \subseteq \omega^{\omega}$. Show that 2^{ω} is closed in the topology on ω^{ω} .
- (7) Define a function $f: \omega^{\omega} \to 2^{\omega}$ by f(x) is the unique $z \in 2^{\omega}$ with infinitely many 1's such that the n^{th} block of 0's has length x(n). So for example if x(n) = n for all $n < \omega$, then f(x) = 101001000100001... Show that f is continuous and injective. Show that the range of f is a countable intersection of open sets.
- (8) Show that the function f from Corollary 2.14 in the book is continuous.