This is homework 2 for Math 114s in winter quarter of 2016. It is due Friday January 22nd in class.

Do the following exercises from the book: x4.5, x4.10-16, x4.25-27.
(1) Let A and B be sets. If A and B are disjoint, then there are obvious injections $f: A \rightarrow A \cup B$ and $g: B \rightarrow A \cup B$ such that f " A and g " B are disjoint and $f " A \cup g " B=A \cup B$.

Now there is a problem if A and B are not disjoint. Find a set X and injections $f: A \rightarrow X$ and $g: B \rightarrow X$ such that f " A and g " B are disjoint and $f " A \cup g " B=X$. This set X is sometimes written $A \sqcup B$ and is called the disjoint union of A and B.
(2) Generalize the previous exercise to arbitrary unions $\bigcup_{i \in I} A_{i}$. The set is sometimes written $\bigsqcup_{i \in I} A_{i}$ and is called the disjoint union of the A_{i}.

The sets from this exercise allow us to take the union in a way where each element in the union remembers which set it came from. We will make use of this in the next exercise.
(3) Let $\left(L_{0},<_{0}\right),\left(L_{1},<_{1}\right), \ldots\left(L_{n},<_{n}\right)$ be orderings. Define $\left(L_{0},<_{0}\right)+\left(L_{1},<_{1}\right.$ $)+\cdots+\left(L_{n},<_{n}\right)$ to be the ordering with underlying set $L_{0} \sqcup L_{1} \sqcup \cdots \sqcup L_{n}$ ordered by $l<l^{\prime}$ if and only if there is an $i \leq n$ such that $l, l^{\prime} \in L_{i}$ and $l<_{i} l^{\prime}$ or $l \in L_{i}$ and $l^{\prime} \in L_{j}$ where $i<j$.

Suppose that $\left(W_{0},<_{0}\right),\left(W_{1},<_{1}\right), \ldots\left(W_{n},<_{n}\right)$ are wellorderings. Show that $\left(W_{0},<_{0}\right)+\left(W_{1},<_{1}\right)+\cdots+\left(W_{n},<_{n}\right)$ is a wellordering.
(4) Suppose that $\left(L_{0},<_{0}\right)$ and $\left(L_{1},<_{1}\right)$ are orderings. Let $\left(L_{0},<_{0}\right) \times\left(L_{1},<_{1}\right)$ be the ordering with underlying set $L_{0} \times L_{1}$ where $\left(l_{0}, l_{1}\right)<\left(l_{0}^{\prime}, l_{1}^{\prime}\right)$ if and only if either $l_{1}=l_{1}^{\prime}$ and $l_{0}<_{0} l_{0}^{\prime}$ or $l_{1}<_{1} l_{1}^{\prime}$.

Suppose that $\left(W_{0},<_{0}\right)$ and $\left(W_{1},<_{1}\right)$ are wellorderings. Show that $\left(W_{0},<_{0}\right.$ $) \times\left(W_{1},<_{1}\right)$ is a wellordering.
(5) Prove that every infinite ordinal can be written uniquely as the sum of a limit ordinal and a finite ordinal.

