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1. January 5

I contend that the hedgehog and the cactus should be, respectively, the spirit
animal and spirit plant of this topic. They are both prickly.

Continuum Problem:1 want to understand the behavior of the continuum func-
tion κ 7→ 2κ (the size of powerset of κ).

Easy Facts:

(1) κ < 2κ (Cantor).
(2) κ < λ −→ 2κ ≤ 2λ.

(3) cf(2κ) > κ, since κcf(κ) > κ (K’́onig).

Theorem 1.1. (Easton) Subject to the three constraints above, any function on the
regular cardinals can be realized as the continuum function of some model of ZFC.

To get any further, we need more axioms! But large cardinals are not likely to
decide CH, as 2ω can be changed with small forcings, which in particular, fix large
cardinal properties.

Remaining questions in ZFC are about singular cardinals. Recall that GCH says
2κ = κ+ for all κ. We get failures of GCH at singular µ using Easton’s theorem (by
failing “badly” beforehand).

The Singular Cardinals hypothesis (one version, at least, and “the most classical,
in a sense” according to S.) at singular µ says: if µ is a strong limit cardinal, then
2µ = µ+.

What is different about singular cardinals?

(1) ZFC bounds exist for 2µ with µ singular. These use PCF-theoretic tech-
niques. The most famous example is ℵω strong limit implies 2ℵω < ℵω4

(Shelah).
(2) Consistency results that require large cardinals. The consistency of the

failure of SCH requires large cardinals.

We’ll be working towards a proof of the following (possibly addressing optimal
hypotheses later):

Theorem 1.2. (Shelah) Con(∃ a supercompact) =⇒ Con(ℵω strong limit +
2ℵω = ℵα+1 for some α < ω1)

1“Prikry forcing is motivated by one of the best things you can be motivated by in set theory.”
S.
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Prikry Forcing

Let U be a normal measure on κ. We define a poset P, called “Prikry forcing:”
conditions are pairs (s,A) where s is a finite set of inaccessibles below κ and A ∈ U.
The ordering is as follows: we declare (s,A) ≤ (t, B) if s end-extends t, s\t ⊆ B,
and A ⊆ B.

The idea is that we can add things to the top of s, which are to be taken from
the old measure one set, the “control”, which then decreases. Given a condition
(s,A), we will often call s the lower part or stem and A the upper part or constraint.

If A∗, A ∈ U and A∗ ⊆ A, then we say that (s,A∗) is a direct extension of (s,A);
we will write (s,A) ≤∗ (t, B) to mean that (s,A) is a direct extension of (t, B) (in
particular, s = t). Direct extensions are key in Prikry forcing(s).

We will refer to the length of a condition (s,A), as l(s) := |s|.

The forcing P has the following properties:

• P has κ+-c.c.
• P satisfies the Prikry lemma: given ϕ in the forcing language and (s,A),

there is a direct extension (s,A∗) ≤ (s,A) deciding ϕ.
• As a corollary to the Prikry lemma, P doesn’t add any bounded subsets to
κ.
• (Strong Prikry Lemma) For every dense open D ⊆ P and (s,A), there is
n < ω and A∗ ∈ U such that every n-step extension of (s,A∗) is in D (i.e.,
whenever we take n-many points from A∗ and add them on top of s, we
land in D).
• (Characterization of Genericity) ~α = 〈αn : n < ω〉 generates a P-generic

filter iff the sequence ~α is eventually in every measure-one set in U. More
precisely, ~α generates a P-generic filter iff

(∀A ∈ U) (∃n) (∀m ≥ n) [αm ∈ A].

Claim: P has κ+-c.c.

Proof. First note that if two conditions (s,A) and (s,B) have the same lower part,
then they are compatible; indeed, (s,A ∩ B) is a condition below each. Observe
that there are just κ-many lower parts (since κ-many finite subsets of κ). Thus if
A ⊆ P is of size κ+, then there is a subset A′ ⊆ A for which all lower parts are the
same. Hence A is not an antichain. �

The following might be described as a “capturing lemma.” It says that we can
refine a condition (s,A) via a direct extension (s,A∗) such that any further exten-
sion (t, B) ≤ (s,A∗) which is in D is such that (t, A∗\(max(t) + 1)), was already in
D (i.e., “captured”).

Claim: For all dense open D ⊆ P and conditions (s,A), there is A∗ ∈ U such that
for all (t, B) ≤ (s,A∗), if (t, B) ∈ D, then (t, A∗\(max(t) + 1)) ∈ D.
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Proof. Let t end-extend s. Let At be such that (t, At) ∈ D, if possible.2 We define
a diagonal intersection ∆At of the At above as follows: set α ∈ ∆At iff for each
lower part t w s such that t ∪ {α} w t, we have α ∈ At.3 In symbols,

∆At = {α < κ : ∀t w s ((t, At) ∈ D ∧ t ∪ {α} w t −→ α ∈ At)} .
Note that it is implicit in the notation “t ∪ {α} w t,” that α > max(t).

Now set A ∗= ∆At. We show that A∗ ∈ U. Let j : V −→ Ult(V,U) be the ultra-
power embedding given by the normal measure U. Recall that since U is normal,
κ is represented in the ultrapower by [idk], where idκ is the identity function on κ.
Thus we have

U = {X ⊆ κ : κ ∈ j(X)} .
So to check that A∗ ∈ U, we check that κ ∈ j(A∗). Now by elementarity, κ ∈ j(A∗)
iff for each lower part t in M ∩ j(P) with κ > max(t), we have κ ∈ j(At). However,
the lower parts t ∈ M with max(t) < κ are just the lower parts t (in V ) in P with
max(t) < κ.4 As At ∈ U for each such t, we have κ ∈ j(At) for each such t, and so
indeed κ ∈ j(A∗). Thus A∗ ∈ U.

Now we check that (s,A∗) is as required. Suppose (t, B) ≤ (s,A∗) and (t, B) ∈
D. Then we answered “yes” to t above, i.e., (t, At) ∈ D. As A∗\(max(t) + 1) ⊆
At (by definition of A∗), we have (t, A∗\(max(t) + 1)) ≤ (t, At) ∈ D, and so
(t, A∗\(max(t) + 1)) ∈ D, since D is dense open. �

A few comments about the above proof are in order. We ranged over each
possible candidate t, and chose an appropriate At ∈ U if possible. We then took
the diagonal intersection of these At. Then taking a condition (t, B) satisfying the
assumptions of the claim, we must have answered “yes” at “stage t.” Then we
applied that D was dense open. This is a common technique in Prikry forcings; the
details become substantially harder, but the core idea stays the same.

2. January 7

Note to the fastidious reader: we finished the proof of the above claim on this
date, though it is written in full under the previous date.

Recall that the notation p‖ϕ means that p decides ϕ, i.e., p 
 ϕ or p 
 ¬ϕ.

Claim: (Weaker Prikry Lemma) For all ϕ in the forcing language and all (s,A) ∈ P,
there is a direct extension of (s,A) that decides ϕ.5

Proof. Apply the “capturing” claim to the dense open set D := {p ∈ P : p‖ϕ} to get
(s,A∗) ≤ (s,A) as in the capturing claim. For each stem t, partition A∗\(max(t)+1)
as follows:

B0
t := {α ∈ A∗ : (t ∪ {α} , A∗) 
 ϕ} B1

t := {α ∈ A∗ : (t ∪ {α} , A∗) 
 ¬ϕ} ,
and

B2
t := (A∗\(max(t) + 1))\(B0

t ∪B1
t ).

2We will, somewhat colloquially, say that “we answered yes to t” if there is some At ∈ U such
that (t, At) ∈ D.

3This is, therefore, “diagonal” in the sense that to check membership of α ∈ ∆At, we check
membership of α in At for all t “below” α.

4This is because j � Vκ = idVk .
5“This is the advantage of writing down a lot of terminology. You get to use it.” -S.
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For each appropriate stem t, one of the Bit is measure one; let’s call it Bt. Set

A∗∗ := ∆Bt.

(Note A∗∗ is in U as it is a diagonal intersection of sets in U .)
We now claim that (s,A∗∗) decides ϕ. Let (t, B) ≤ (s,A∗∗) decide ϕ and be of

minimal length. Suppose for a contradiction that l(t) > l(s). To simplify notation,
let t+ := max(t) and t− := t \ {t+} . First observe that (t, A∗) decides ϕ since
(t, B) ≤ (s,A∗∗) ≤ (s,A∗) and capturing jointly imply (t, A∗) ∈ D := {p : p‖ϕ} .
For simplicity, and without loss of generality, let’s suppose that (t, A∗) 
 ϕ. Now
since (t, B) ≤ (s,A∗∗) and l(t) > l(s), we know t+ ∈ A∗∗, by definition of the
ordering. Hence by definition of A∗∗, we get t+ ∈ Bt− . But t+ ∈ Bt− and (t− ∪
{t+} , A∗) = (t, A∗) 
 ϕ implies that Bt− = B0

t− .
Finally, observe that every one-point extension of (t−, A∗∗) then forces ϕ, since

if (t− ∪ {α} , A′) ≤ (t−, A∗∗), then α ∈ A∗∗, so α is in Bt− = B0
t− . However, this

implies that (t−, A∗∗) 
 ϕ since every extension of greater length extends some
one-point extension, which we know all force ϕ.

Since (t−, A∗∗) ≤ (s,A∗∗) and (t−, A∗∗) has smaller length than (t, B), this
contradicts the minimality of the length of t. With this the proof is complete. �

Claim: (Stronger Prikry Lemma) Given a dense open D ⊆ P and (s,A) ∈ P, there
are n < ω and A∗∗ ∈ U so that every n-step extension of (s,A∗∗) is in D.

Proof. Apply the capturing Lemma to D to get (s,A∗) ≤ (s,A) as in the capturing
lemma. Define sets Ym for m < ω as follows:

Y0 := {t w s : (t, A∗) ∈ D} , and Ym+1 = {t w s : ∃A ∈ U ∀α ∈ A [t ∪ {α} ∈ Ym]} .

Being in Ym is, roughly, saying that you are an m-step extension away from being
in D.

For each lower part t and each m, if t /∈ Ym+1, then {α < κ : t ∪ {α} ∈ Ym} is
measure zero; hence its complement is measure one. So for each lower part t and
each m, we get an Amt witnessing that t ∈ Ym+1 or t /∈ Ym+1. Define

Bt :=
⋂
m<ω

Amt ,

(in U by completeness of U) and A∗∗ := ∆Bt; so A∗∗ ∈ U as well.
Now let (t, B) ≤ (s,A∗∗) be in D and set n := l(t)− l(s). We show that s ∈ Yn.

First, t ∈ Y0. Now we show by induction that t � l(s)+n− i ∈ Yi for each 1 ≤ i ≤ n.
Fix i < n and suppose u := t � l(x)+n−i ∈ Yi; we show that u− := u\ {u+} ∈ Yi+1

(where u+ := max(u)). Now (t, B) ≤ (s,A∗∗) implies that u+ ∈ A∗∗, and therefore
u+ ∈ Bu− . By our inductive assumption, u− ∪ {u+} ∈ Yi. Since u+ ∈ Aiu− also,
there must be measure one many α such that u− ∪ {α} ∈ Yi. But this is precisely
the statement u− ∈ Yi+1.

Thus we know that s ∈ Yn. Now let (t′, B′) ≤ (s,A∗∗) be an arbitrary n-step
extension; we show (t′, B′) ∈ D. Let t1 < . . . < tn enumerate t′\s. Using the
definition of A∗∗ and an argument similar to the one in the last paragraph, argue
by induction that for each 1 ≤ i ≤ n, we have s_〈t1 . . . , ti〉 ∈ Yn−i. Then we
conclude t ∈ Y0, and so (t′, A∗) ∈ D. Hence (t′, B′) is too, by the openness of
D. �

Claim: Forcing with P doesn’t add bounded subsets of κ.
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Proof. Fix a name Ẋ for a subset of (limit) µ < κ. For each ξ < µ, let ϕξ be

the forcing-language sentence ξ̌ ∈ Ẋ. Given an arbitrary (s,A) build a decreasing
sequence 〈(s,Aξ) : ξ < µ〉 of direct extensions of length µ, where at stage ξ+1 < µ,
we have (s,Aξ)‖ϕξ; at limit ξ, we simply take Aξ :=

⋂
ζ<ξ Aζ , which is in U by

κ-completeness of the measure. Similarly, by the fact ≤∗ is κ-closed, we can find
(s,A∗) a lower bound for the sequence.

Now set X = {ξ < µ : (s,A∗) 
 ϕξ} . By definability of forcing, X ∈ V ; further-

more, (s,A∗) 
 X̌ = Ẋ. Since every condition can be refined to one which forces

that Ẋ is in the ground model, it is forced that Ẋ is in the ground model. �

Corollary: κ is preserved.

Proof. κ is a limit cardinal in V. Moreover, since no bounded subsets of κ are added
after forcing, we know that all cardinals below κ are still cardinals in V [G]. Hence
κ is still a limit of cardinals, and in particular, a cardinal. �

Getting the failure of SCH. Start with κ measurable and 2κ = κ++. Force with
Prikry forcing.

Exercise: Prove the characterization of genericity for P.

Exercise: The critical sequence of the ω-step iterated ultrapower by U is Prikry
generic over Mω for j0,ω(U).

3. January 9

Recall P is Prikry forcing defined from U, a normal measure on κ.
Facts about the extension by Prikry forcing.

We’ll study more carefully the combinatorics of the model V [G]. First some
definitions. Recall that if cf(λ) > ω and S ⊆ λ is stationary, then we say that S
reflects if there is δ < λ with cf(δ) > ω such that S ∩ δ is a stationary subset of δ.
If 〈Si : i < ξ〉 is a sequence (finite or infinite) of stationary subsets of λ, then we
say 〈Si : i < ξ〉 reflects simultaneously if there is δ < λ with cf(δ) > ω for which
Si ∩ δ is stationary in δ for each i < ξ.

We’ll also need a small bit of background in PCF. Let 〈τn : n < ω〉 be an
increasing sequence of regular cardinals with sup τ. A scale of length τ+ in

∏
n<ω τn

is a sequence ~f = 〈fα : α < τ+〉 which is increasing and cofinal in (
∏
τn, <

∗), where
<∗ is the eventual domination ordering. More explicitly, increasing means

(∀α < β < τ+) (∃m ∈ ω) (∀n ≥ m) [fα(n) < fβ(n)].

Cofinal means that for any g ∈
∏
n<ω τn, there is some α < τ+ such that g <∗ fα.

An ordinal γ < τ+ is good (resp. very good) for ~f if there is A ⊆ γ unbounded
(resp. club) and m < ω such that ∀n ≥ m, 〈fα(n) : α ∈ A〉 is strictly increasing.

A scale ~f is good (very good) if modulo a club, almost every point of uncountable
cofinality is good (very good).

Now we’re ready to state some combinatorial results that hold in the generic
extension after forcing with P :
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• (Cummings-Schimmerling) �κ,ω holds in V [P].6

• (Cummings-Foreman-Magidor) In V, set S0 := κ+ ∩ cof(< κ) and S1 :=
κ+ ∩ cof(κ). Then in V [P] :

– S1 is a non-reflecting stationary set7

– There is an ω-sequence of stationary subsets of S0 which don’t reflect
simultaneously.

– If κ is κ+-supercompact, then every finite collection of stationary sub-
sets of S0 reflects simultaneously.8

• (Cummings-Foreman-Magidor) There is a very good scale of length κ+ in∏
κ+
n where 〈κn : n < ω〉 is P-generic.

• (Moore) MRP (Mapping Reflection Principle) fails.

Notes:

• P κ+-c.c. implies S0, S1 still stationary in V [P].
• If ω < cf(δ) < κ in V [P], then ω < cf(δ) < κ in V (as we know what

happens to the other possible cofinalities).

Claim S1 := κ+ ∩ cof(κ) does not reflect in V [P].

Proof. In V [P] let δ < κ+ with uncountable cofinality; in particular, since cfV [P](κ) =

ω, we have ω < cfV [P](δ) < κ. By the remarks above, we also have ω < cfV (δ) < κ.
We’ll show that S1∩δ is non-stationary. In V, fix a club D ⊆ δ such that ot(D) = δ
and D contains no points of cofinality ≥ δ; in particular, D contains no points
of cofinality κ (in V ). Then D ∩ S1 ∩ δ = ∅. As D is still a club in V [P], this
suffices. �

Claim In V [P] there is an ω-sequence of stationary subsets of S0 which don’t reflect
simultaneously.

Proof. Apply Solovay Splitting, in V, to S0 to get a sequence 〈Tα : α < κ〉 of
disjoint, stationary subsets of S0. In V [P], let T ∗n = Tκn where 〈κn : n < ω〉 is the
Prikry-generic sequence.

Suppose for a contradiction that, in V [P], there is a δ with cf(δ) > ω such
that T ∗n ∩ δ is stationary for all n < ω. From the note above, we know that in V,
ω < cf(δ) < κ. Also in V, define B := {α < κ : Tα ∩ δ is stationary} . We will show

that B is unbounded in κ and that |B| ≤ δ. Since cfV (δ) < κ, this will contradict
the regularity of κ in V.

If B was bounded, then there would be an α < κ such that for all β ≥ α, Tβ ∩ δ
was nonstationary V, and hence nonstationary in V [P]. But in V [P] there is an n
such that κn > α and (by our assumption for a contradiction) Tκn ∩ δ is stationary.

Thus we know that B is unbounded. To see that |B| ≤ δ, let D ⊆ δ be a club
with ot(D) = δ; in particular, |D| = δ. Now since the Tα are disjoint, we know that
〈Tα ∩D : α ∈ B〉 is a sequence of non-empty, disjoint subsets of D. Since |D| ≤ δ,
we must have |B| ≤ δ. �

Claim If κ is κ+-supercompact, then every finite collection of stationary subsets of
S0 reflects simultaneously.

6This implies the very good scale mentioned below.
7“L has lots of non-reflecting stationary sets. The way to see this is that they come from �.

However, lots of stationary set reflection requires large cardinals.” -S.
8“This is like saying: given a bit more large cardinal strength, you can’t get more reflection

from S0.” -S.
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Proof. Suppose not, for a contradiction. Fix n < ω, and assume that


P “∃〈Ṫi : i < n〉 which is a counterexample.”

Let G be P-generic, and define Gj := {p ∈ G : l(p) = j} . Now define

T ji :=
{
α ∈ S0 : ∃p ∈ Gj , p 
 α ∈ Ṫi

}
.

We claim that for each i ≤ n, there is j < ω such that T ji is stationary. Otherwise,

for some i < n, T ji is nonstationary for each j. Let Cj ⊆ κ+ be a club witnessing
this, and define C :=

⋂
Cj , which is still club in κ+. Let p ∈ G be arbitrary. Since

in V [G], (Ṫi)
G is stationary in κ+, there is α ∈ (Ṫi)

G ∩C. Thus there is a condition

q ∈ G such that q 
 α̌ ∈ Ṫi. Let r ≤ p, q with r ∈ G, and set j := l(r). Then

r ∈ Gj and r 
 α ∈ Ṫi. Since α ∈ C also, we have α ∈ C ∩ T ji ⊆ Cj ∩ T ji = ∅, a
contradiction.

Now observe that T j+1
i ⊇ T ji for each i ≤ n and j < ω, since if α ∈ S0 and there

is p ∈ Gj with p 
 α ∈ Ṫi, then any one-step extension of p also forces α ∈ Ṫi.

As shown in the previous paragraph, for each i < n, there is j < ω such that T ji
is stationary. Since the T ji are increasing, we can find a single j such that T ji is
stationary for each i ≤ n (essential use of the finiteness here).

Let s be the first j elements of the Prikry sequence. Define, in V,

Ui :=
{
α ∈ S0 : (∃A ∈ U)

[
(s,A) 
 α ∈ Ṫi

]}
.

Then T ji ⊆ Ui, so that Ui is stationary, for each i. Since κ is κ+-supercompact,9

there is δ with κ > cf(δ) > ω such that Ui ∩ δ is stationary for all i < n. Let D ⊆ δ
be a club in V with ot(D) = cf(δ). For each β ∈ D ∩ Ui we get Aβ,i such that

(s,Aβ,i) 
 β ∈ Ṫi. Let

A∗ :=
⋂
i<n

⋂
β∈Ui∩D

Aβ,i.

Now (s,A∗) 
 D ∩ Ui ⊆ Ṫi for i < n. Moreover, it forces D ∩ Ui is stationary in δ.
So it forces each Ti to reflect at δ, a contradiction. �

4. January 12

Claim If 〈κn : n < ω〉 is Prikry-generic, then there is a very good scale of length
κ+ in

∏
κ+
n .

Proof. Fix functions fα : κ −→ κ for α < κ+ such that [fα]U = α. Define f∗α
with domain ω by: n 7→ fα(κn). We claim that on a tail subset of ω, f∗α(n) < κ+

n .
Indeed, α = [fα]U = j(fα)(κ) < κ+. Since κ+ = (κ+)M (because M closed under
κ-sequences, and hence computes the successor of κ correctly) we get, using the nor-
mality of U, that Aα := {β < κ : fα(β) < β+} ∈ U. Since the sequence 〈κn : n < ω〉
is Prikry-generic, for each α there is a tail end of the κn such that κn ∈ A. Hence,
for each α, fα(κn) < κ+

n on a tail-end, i.e., f∗α(n) < κ+
n for all large enough n.

Thus we may assume, without loss of generality (i.e., by modifying the fα on
measure zero sets) that f∗α ∈

∏
κ+
n for each α < κ+.

We claim that 〈f∗α : α < κ+〉 is a scale of length κ+. We check (1) increasing and
(2) cofinal.

9See notes for Jan. 15 for review of supercompact cardinals.
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For (1), let α < α′ < κ+. Now [fα] = α < α′ = [fα′ ]. So there is an A ∈ U such
that ∀β ∈ A, fα(β) < fα′(β). Since 〈κn : n < ω〉 is Prikry-generic, κn ∈ A for all
large enough n. Hence f∗α(n) < f∗α′(n) for all large enough n.

(2) For cofinal, let ḟ be a name for an element of
∏
κ+
n . First we make an

observation. Let n < ω and p ∈ P with l(p) > n. Then there is βn such that p 

κ̇n = βn (i.e., p decides the value of κ̇n), namely, βn := sp(n) where p = 〈sp, Ap〉.
Since p also forces ḟ in

∏
κ+
n , we have p 
 ḟ(n) < β+

n (note that writing β+
n here

makes sense, since this forcing preserves all cardinals).
For each n < ω, define

Pn :=
{
β < κ : (∃p ∈ P)

[
l(p) = n+ 1 ∧ sp(n) = β

]}
,

so that Pn is the set of β < κ for which there is a condition of length n+ 1 which
has β as it’s top Prikry point. Note that since κ ∈ j(Pn), we have Pn ∈ U, for each
n < ω.

Fix an n < ω. For each β ∈ Pn, say witnessed by p = 〈s,A〉, we can find γs,n < β+

and a direct extension (by the PL) 〈s,As〉 of p such that 〈s,As〉 
 ḟ(n) = γs,n.
(note that γs,n is uniquely determined by s and n, since any two conditions with
the same length-n+ 1 stem are compatible). Now there are at most β-many stems
of length n + 1 which have β as a top point. Thus defining γβ,n := sups γs,n, we
have γβ,n < β+.

Now consider the function gn defined on Pn by β 7→ γβ,n, and let αn := [gn]U
(note that [gn]U is indeed an ordinal since gn(ξ) is an ordinal for all ξ ∈ Pn, a
measure-one set). Since gn(β) < β+ for all β ∈ Pn, the normality of U implies that
αn < κ+. Thus we can take α∗ > supn αn with α∗ < κ+. Finally set A∗ := ∆sAs.

We claim that


 ḟ <∗ f∗α∗ .

Indeed, take G to be a generic and let B be a measure one set such that ∀n < ω
and ∀ξ ∈ B, fαn(ξ) < fα∗(ξ). Now let n∗ large enough such that for all n ≥ n∗,
κn ∈ B∩A∗. Fix n ≥ n∗ and let s be the unique stem of length n+1 in G. Note that
(s,A∗) ∈ G since it is compatible with all elements of G. Then (s,A∗) ≤ (s,As) by

definition of A∗ as a diagonal intersection, and (s,As) 
 pḟ(n) = γs,nq. So in V [G]

we have (ḟ)G(n) = γs,n ≤ γmax(s),n = fαn(κn) < fα∗(κn). So (ḟ)G(n) < fα∗(n) for

all n ≥ n∗. Hence (ḟ)G <∗ f∗α∗ . �

Claim If ω < cf(γ) < κ in V [〈κn : n < ω〉] then γ is very good for 〈f∗α : α < κ+〉.

Proof. By a note from last time, ω < cfV (γ) < κ. So fix D ⊆ γ club with ot(D) =
cf(γ). Now we claim that

A := {α < κ : 〈fη(α) : η ∈ D〉 is strictly increasing} ∈ U.

We show that κ ∈ j(A); going through the acrobatics of applying j, we must show

κ ∈ {α < j(κ) : 〈j(f)η(α) : η ∈ j(D)〉 is strictly increasing} .

Now observe that since |D| = cf(γ) < κ, we have j(D) = j′′D. So we show 〈j(f)j(η) :
η ∈ D〉 is strictly increasing; this holds iff 〈j(fη) : η ∈ D〉 is strictly increasing. But
recalling that j(fη)(κ) = [jη] = η, we have that this holds iff 〈η : η ∈ D〉 is strictly
increasing.
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Let n∗ be such that ∀n ≥ n∗, κn ∈ A. Then n∗, D witness that 〈f∗α : α < κ+〉 is
very good at γ since for each n ≥ n∗, κn ∈ A, and so 〈fη(κn) : η ∈ D〉 = 〈f∗η (n) :
η ∈ D〉 is strictly increasing. �

5. January 14

Supercompactness: a brief interlude.
For κ ≤ λ, let’s define Pκ(λ) := {X ⊆ λ : |X| < κ} . If you get confused, just

look at κ ⊆ Pκ(κ). Let U be an ultrafilter on Pκ(λ).

• U is κ-complete if ∀〈Aα : α < µ〉 with µ < κ,
⋂
α<µAα ∈ U.

• U is fine if ∀α < λ, {X : α ∈ X} ∈ U.10

• U is normal if ∀F : Pκ(λ) −→ λ such that ∀X ∈ dom(F )F (X) ∈ X,︸ ︷︷ ︸
Think: regressive

there

is A ∈ U such that F is constant on A.

An ultrafilter U on Pκ(λ) is a supercompactness measure if it has the three
properties above.

We can form Ult(V,U) as before. We get j : V −→ M ∼= Ult(V,U). Then
crit(j) = κ and j(κ) > λ. Furthermore, λM ⊆M.

Exercise: This embedding has the stated properties.

Fact: U = {X ⊆ Pκ(λ) : j′′λ ∈ j(X)} .11

κ is λ-supercompact iff there is a supercompactness measure on Pκ(λ) iff there
is an embedding as above.

Claim: If κ is λ-supercompact and λ is regular, then any sequence 〈Sξ : ξ < µ〉 for
µ < κ of stationary subsets of λ ∩ cof(< κ) reflect simultaneously.12

Proof. Let j : V −→M ∼= Ult(V,U) be as above. Let γ := sup j′′λ.13 We claim that
γ < j(λ). First note that 〈j(α) : α < λ〉 ∈M since λM ⊆M. Thus M |= cf(γ) = λ.
Since λ < j(κ) < j(λ) and M |= “j(λ) is regular and cf(γ) = λ” we get γ < j(λ).

Now we show that for each ξ < µ, j(Sξ) ∩ γ is stationary in M. Then

M |= “(∃δ < j(λ)) (∀ξ < µ) j(Sξ) ∩ δ is stationary.”

This is therefore enough by elementarity (note we’re implicitly using the fact that
j(〈Sξ : ξ < µ〉) = 〈j(Sξ) : ξ < µ〉 which holds since j � κ = idκ)

Indeed, fix a club C ⊆ γ in M. Define D = {α < λ : j(α) ∈ C} . We claim that D
is < κ-club.14 For unbounded, fix ξ < λ. Then form a sequence 〈〈βn, γn〉 : n < ω〉
such that

• j(ξ) < β0

• γn = j(αn) for some αn < λ
• βn+1 > γn > βn
• βn ∈ C.

10In the case of U = Pκ(κ), we get that U contains all of the tail sets.
11As in the measurable case, we’ll use this to test for whether a set is measure one.
12“You just hit stuff with j, and good things happen.” -S.
13“Because j′′λ is magical, the sup is also magical.” -S.
14That is, unbounded and < κ-closed.
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Letting γ := supn γn = supn βn, we have that γ ∈ C by closure of C and γ =
supn j(αn) = j(supn αn) (with the last following since j � κ = idκ). Hence
supn αn ∈ D is above ξ. That D is < κ-closed follows from j � κ = idκ .

Now since D is < κ-club, D ∩ Sξ 6= ∅ for each ξ < µ. So if α ∈ D ∩ Sξ, then
j(α) ∈ C ∩ j(Sξ) as required. �

Bemerkungen:

• cfM (γ) = λ < j(κ) implies that S reflects at a point of cf (< κ).
• The proof would work for any collection of < κ-many stationary subsets.

Our next goal is the following Theorem of Magidor: if κ is supercompact and
k < ω, then there is a generic extension in which κ = ℵω is strong limit and
2ℵω = ℵω+k+1.

Towards a definition of the poset, let U be a supercompactness measure on
Pκ(κ+k), and assume that 2κ = κ+k+1.15 The set

Z :=
{
X ∈ Pκ(λ) : κ ∩X is inaccessible ∧ |X| = (X ∩ κ)+k

}
is in U , as κ = j(κ) ∩ j′′κ+k and hence j′′κ+k ∈ j(Z).

• For X ∈ Z, set κX := X ∩ κ.
• For X,Y ∈ Z set X ≺ Y if |X| < κY and X ⊆ Y.
• A supercompact Prikry stem is a sequence 〈X0, X1, . . . , Xn−1〉 of elements

of Z such that Xi ≺ Xi+1 for all i < n− 1.

Now define a poset P : conditions are (s, F ) where s = 〈X0, f0, X1, f1, . . . , Xn−1, fn−1〉
where ~X is a supercompact Prikry stem, where for convenience, X0 is such that
κX0

= ω and ∀i < n−1, fi ∈ C(κXi , κXi+1
) where C(α, β) = Coll(α+k+2, < β), and

where fn−1 ∈ C(κXn−1 , κ). Furthermore, F is a function with dom(F ) ∈ U ∩ P(Z)
and ∀X ∈ dom(F ), F (X) ∈ C(κX , κ).

Now say s = 〈X0, f0, . . . , Xn−1, fn−1〉 and t = 〈Y0, g0, . . . , Ym−1, gm−1〉. We de-
fine (s, F ) ≤ (t, G) if

(1) ~X end-extends ~Y .
(2) ∀i < m, fi ≤ gi in the poset C(κXi , κXi+1

).
(3) For all i ∈ [m,n) we have Xi ∈ dom(G) and fi ≤ G(Xi).
(4) dom(F ) ⊆ dom(G) and ∀X ∈ dom(F ), F (X) ≤ G(X).

6. January 16

Recall what the conditions from last time were of the form 〈s, F 〉, where F is our
“constraining function” and the “stem” s is of the form 〈X0, f0, X1, f1, . . . , Xn−1, fn−1〉.

Given conditions p, q, we define (direct extension) p ≤∗ q if p ≤ q and l(p) = l(q).
Claim: (Prikry Lemma) Given p ∈ P and ϕ in the forcing language, there is q ≤∗ p
such that q decides ϕ.
Claim: (Round 1) For every dense open set D and every condition (s, F ), there is F ∗

so that (s, F ∗) ≤ (s, F ) and if (t, G) ≤ (s, F ∗) is in D, then (t, F ∗ � {X : t ≺ X}).
(extending use of symbol ≺ here to say that X is a next possible Prikry point; in
particular, κX should be greater than sup of the ranges of the collapses).

15We may come back and address how to get large cardinals κ with 2κ large.
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Proof. Side note: how many stems are there? |Pκ(κ+k)| = κ+k if κ is κ+k-
supercompact.

Let 〈sα : α < κ+k〉 enumerate all possible stems extending s. We construct
〈Fα : α < κ+k〉 such that F0 = F, and Fα+1 ≤ Fα (pointwise). At limit γ we want
[Fγ ]U ≤ [Fα]U for all α < γ.

At stage α+ 1, let Fα+1 ≤ Fα such that (sα, Fα+1) ∈ D if possible.
Why can we take lower bounds at limits? [F ]U = j(F )(j′′κ+k) ∈ CUlt(j′′κ+k ∩

j(κ), j(κ)) = CUlt(κ, j(κ)) := CollUlt(κ+k+2, < j(κ)). Now M ∼= Ult(V,U) is closed
under κ+k-sequences. This implies that CollUlt(κ+k+2, < j(κ)) is κ+k+1-closed (i.e.,
< κ+k+1-sequences), so we can take a lower bound.

Next we capture the measure one sets used by the Fα’s. Set F̄ to be, mod-U,
a lower bound for 〈Fα : α < κ+k〉. Let Aα be the measure one set witnessing
[Fα+1]U > [F̄ ]U .

Let A∗ :=
{
X : ∀α < κ+k if sα ≺ X, then X ∈ Aα

}
.We claim that A∗ ∈ U.We

check j′′κ+k ∈ j(A∗). j′′κ+k ∈
{
X : ∀α < j(κ+k) if j(s)α ≺ X then j′′κ+k ∈ j(A)α

}
.

Which stems in j(P) are ≺ j′′κ+k? This is exactly the j-images of stems in P. Note
this does it. For such stems, indexed by some f(α), we have j′′κ+k ∈ j(Aj(α)).

Now set F ∗ := F̄ � A∗.
Let (t, G) ≤ (s, F ∗) be in D. Then t = sα for some α < κ+k. Since every X ∈ A∗

with X � sα is in Aα, we must have (sα, Fα+1) ∈ D. So since F ∗ is below Fα+1 on
Aα, we get (sα, F

∗) ∈ D (and sα = t, and probably some restriction of F ∗ to X’s
which are above t). �

Important Remark Suppose γ̇ is a name for an ordinal, and D = {p ∈ P : p‖γ̇} . At
the end the value that (t, G) decides is the same as the value that (t, F ∗) decides.

7. January 21

Claim: (Round 1) For every dense open set D and every condition (s, F ), there is F ∗

so that (s, F ∗) ≤ (s, F ) and if (t, G) ≤ (s, F ∗) is in D, then (t, F ∗ � {X : t ≺ X}).
(Recall Claim 1 was proved last time.)

Claim: (Round 2) Let D be dense open, and (s, F ∗) be as in Round 1. Then there
is a direct extension (s, F ∗∗) of (s, F ∗) so that if (t, G) ≤ (s, F ∗∗) is in D with X
is the top Prikry point of t, then (t � (l(t) − 1)_〈X,F ∗∗(X)〉, F ∗) ∈ D. (reducing
top-most collapse to one given by universal constraining function).

Proof. Fix X ∈ dom(F ∗). Enumerate {s : s ≺ X} , i.e. the stems on top of which X

can sit, as 〈sα : α < κ+k
X 〉 (can do this as (κ+k

X )<κX has size κ+k
X , by enough GCH and

that it holds for κ, and reflection from supercompact.) Construct 〈fα : α < κ+k
X 〉

so that f0 = F ∗(X) ∈ C(κX , κ), (recall κ+k+2
X -closed) and fα+1 ≤ fα (ordering

in C(κX , κ)) is such that (s_α 〈X, fα+1〉, F ∗) ∈ D, if there is one. By closure of
C(κX , κ), we can take a lower bound F ∗∗(X).

Let (t, G) ≤ (s, F ∗∗) be in D. By Round 1, (t, F ∗) ∈ D. Fix α so that t � l(t)−1 =
sα, andX is the top Prikry point of t. By construction (s_α 〈X, fα+1, F

∗) ∈ D. Hence
so is (s_α (X,F ∗∗(X)), F ∗). �

Let (s, F ∗∗) be as in Round 2 for D = {p : p‖ϕ} .

Let t be a stem. Partition {X : t ≺ X} intoA0
t := {X : (t_(X,F ∗∗(X)), F ∗) 
 ϕ} ,

A1
t := {X : (t_(X,F ∗∗(X), F ∗)) 
 ¬ϕ}, and A2

t := {. . . : doesnt decide ϕ} . Let
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At := Ait ∈ U. Let F ∗∗∗ := F ∗∗ � ∆At.

Claim: (Round 3) There is a direct extension of (s, F ∗∗∗) that decides ϕ.

Proof. Let (t, G) ≤ (s, F ∗∗∗) be of minimal length deciding ϕ. Assume for a con-
tradiction that l(t) > l(s). Let t− := t � l(t) − 1 and X be the top point of t. By
Rounds 1 and 2, (t− _ 〈X,F ∗∗(X)〉, F ∗) decides ϕ. Assume (since measure one
set of things which decide) that it forces ϕ. Now X ∈ At− by definition of diagonal
intersection, so At− = A0

t− . Hence (t−, F ∗∗∗) already forces ϕ, contradicting the
minimality of l(t). �

Exercise: Prove the strong form of the Prikry Lemma (will need Rounds 1 and 2
above and the following claim).

Claim:16 Let D be dense open and (s, F ∗∗) be as in Round 2 above. Then
there exist a decreasing sequence of constraints Fn and sets Ym such that Y0 =
{s : (s, F ∗) ∈ D} and Ym+1 := {s : ∃A ∈ U ∀X ∈ A (s_(X,Fm(X)) ∈ Ym)} (try-
ing to capture idea that you’re m + 1 steps away from being in D) and such
that if n ≥ 1 and t is the stem of an extension (s, Fn) with with t ∈ Yn, then
t � l(t)− 1_(X,Fn(X)) ∈ Yn. As before, X is the top Prikry point of t.

Let ġn be a name for the nth generic collapse. We’ll prove the following next time:

Corollary: Let Ẋ be a name for a subset of some µ < κ. Then 
P Ẋ ∈ V [ġ0× . . .×
ġn−1] for some n. Note that κ is preserved in models of the form V [ġ0× . . .× ġn−1]
since it’s a generic extension of a product of collapses well below κ.

8. January 26

Recall where we were last time: Magidor’s forcing had conditions

〈X0, f0, X1, f1, . . . , Xn−1, fn−1, F 〉.
The constraining function on the top guides the extensions.

We finished proving the PL.

Corollary 8.1. For every name Ẋ for a subset of some µ < κ, 
P ∃n < ω Ẋ ∈
V [ġ0 × ġ1 × . . .× ġn−1] where ġi names the C(κXi , κXi+1)-generic added by P.

Proof. (Natural first try, which doesn’t quite work) Let p = (s, F ) be a condition so
that µ < κXn−1 where the stem s has the usual form 〈x0, f0, . . . , Xn−1, fn−1〉. Look
at P � p with ≤∗ (i.e., direct extensions of p). This “is” a product. By diagonalizing

over ~h ∈
∏
i<nC(κXi , κXi+1) × C(κXn−1 , κ), we can find (s, F ∗) such that if there

is G such that (t, G) ≤ (s, F ∗) decides α̇ ∈ Ẋ, where t is s-strengthened by ~h, then
so does (t, F ∗). ...17

(Second try) Let p = (s, F ) as before. For α < µ and ~h ∈
∏
i<nC(κXi , κXi+1

),
set Dα,~h to be the set of (t, G) such that l(t) = n, t = 〈Y0, g0, . . . , Yn−1, gn−1〉, and

either g � n − 1 ≤ ~h and (t, G)‖α ∈ Ẋ, or ~g � n − 1 ⊥ ~h. Diagonalize over α′s and
~h to get (s∗, F ∗) ≤∗ (s, F ) so that if (t, G) ≤∗ (s∗, F ∗) is in the good case, then

16“If the claim is incorrect, then part of exercise is to fix it.” -S.
17Exercise: Convince yourself something went wrong here!



PRIKRY FORCINGS, UNGER’S LECTURES 13

so is (t � (l(t)− 1)_〈x, top collapse of s∗〉, F ∗). Note the collapses in t � (l(t)− 1)

are exactly the ~h′s. Hence, if compatible with ~h, take lower bound, and extend to
decide. �

Corollary 8.2. κ is preserved, strong limit, singular, cofinality ω and cardinals in
the interval (κ+k+2

Xi
, κXi+1) are collapsed.

So κ = ℵω in the extension by P. (Un?)fortunately,
⋃
Xn = κ+k, so |κ+k| = κ

in the extension. Recall we had 2κ = κ+k+1.
For each i ≤ k, we define Vi = V [〈Xn ∩ κ+i : n < ω〉, 〈gn : n < ω〉].

Claim: The model we want is V0. In particular, κ+i is preserved in V0 for all i ≤ k.
To do this, we’ll show that κ+i+1 is preserved in Vi. (preserving these guys in

outer models of V0, and so in V0 itself).

Proof. Note |κ+i| = κ in Vi. Assume there is b : µ −→ κ+i+1 a cofinal map with
µ < κ. Note ∀j ≤ i, cf(κ+j) = ω in Vi. So cf(κ+i+1) must be strictly below κ, if

collapsed. Let ḃ be a P-name for such a function. �

Digression on Automorphisms:

Let A be the group of permutations of κ+k which fix the whole set κ+i. Note
that each Γ ∈ A permutes Pκ(κ+k), by taking pointwise images. In fact, each Γ
gives an automorphism of the forcing. Given p = 〈X0, f0, . . . , Xn−1, fn−1, F 〉, set
Γp = 〈ΓX0, f0,ΓX1, f1, . . . ,ΓXn−1, fn−1, F ◦ Γ−1〉. Notice that dom(F ◦ Γ−1) ∈ U.

We claim that {X : ΓX = X} ∈ U. (pointwise). Notice j(Γ) fixes j′′κ+k point-
wise. So j′′κ+k ∈ j({X : ΓX = X}). That is j(Γ)(j′′κ+k) = j′′κ+k.

We claim: Let p, p′ ∈ P with

p = 〈X0, f0, . . . , Xn−1, fn−1, F 〉 and p′ = 〈Y0, f0, . . . , Yn−1, fn−1, G〉.
Suppose that (1) ∀j < n, Xj∩κ+i = Yj∩κ+i and (2) For all X ∈ dom(F )∩dom(G),
F (X) = F (G). Then there is Γ ∈ A such that Γp ‖ p′.

Further, given a p ∈ P we can find (s∗, F ∗) = p∗ ≤ p such that for all α < µ,

if (t, G) ≤ (s∗, F ∗) decides ḃ(α), then so does (t, F ∗), with the same value (using
capturing round of PL over and over for each α).

Claim: |
{
λ < κ+i+1 : ∃p∗∗ ≤ p p∗∗ 
 ḃ(α) = λ

}
| ≤ κ+i.

Proof idea: If there are too many λ, then can find coniitions satisfying the
conditions of the above claim, which will lead to a contradiction.

Note that this (sub)claim finishes the proof that κ+i+1 is preserved, as the above

claim covers the range of ḃ by a small set.

9. January 28

Recall where we ended last time. We had assumed the existence of ḃ a name
for a function from µ < κ to κ+i+1 which is cofinal. Moreover, 
 ḃ ∈ Vi, where
Vi := V [〈Xn ∩ κ+i : n < ω〉, 〈gn : n < ω〉]. We found p∗ such that ∀α < µ ∀q ≤ p∗

if q 
 ḃ(α) = λ, then so does the condition 〈stem(q), constraint(p∗)〉.
Now we claim that

∣∣∣{λ < κ+i+1 : ∃q ≤ p∗ q 
 ḃ(α) = λ
}∣∣∣ ≤ κ+i. Let’s call this

set A. Recall this a contradiction (covering the range of ḃ by a small set).

Otherwise, |A| > κ+i. So fix qλ for λ ∈ A such that qλ 
 ḃ(α) = λ. We can
assume that the constraint of qλ is the constraint of p∗ (by our choice of p∗).
We can also assume that l(qλ) is fixed on a set of size > κ+i. Now, there are
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κ+i supercompact Prikry stems ~Z with each Zj ∈ Pκ(κ+i).). So there are qλ =
〈X0, f0, X1, f1, . . . , Xn−1, fn−1, F

∗〉 and qλ′ = 〈Y0, f0, Y1, f1, . . . , Yn−1, fn−1, F
∗〉 (up-

per part fixed; can also assume that the sequence of the f ’s are constant; just κ-
many; The Xi, Yi may be different, but their intersections with κ+i are the same)
so that Xj ∩κ+i = Yj ∩κ+i for all j. By the previous claim, there is a Γ which fixes

κ+i so that Γqλ‖qλ′ . But Γ fixes ḃ. But this contradicts Γqλ and qλ′ decide different

values for ḃ(α).

Other ways of preserving cardinals above κ:
Method 1: List of references.

(1) Foreman-Woodin: GCH fails everywhere.
(2) Foreman: More saturated ideals.
(3) Cummings, Morgan (Charles), Djamonza, ...? Universality numbers of

graphs at singulars (note this is not the title).

Sketch (with many exercises that are not too bad). Let RC(α, β) be the regular
open algebra for C(α, β). Recall C(α, β) = Coll(α+k+2, < β). Define a measur-
able version P̄ of the forcing P we just did. Conditions are just (where α0 = ω)
〈α0, f0, α1, f1, . . . , αn−1, fn−1, f〉. dom(f) ∈ Ū where Ū =projection of U to a nor-
mal measure on κ,18 and for all α ∈ dom(f), f(α) ∈ RC(α, κ).

For a constraint F from P and A ∈ U, define b(F,A) is a function where the
domain is {κX : X ∈ A ∩ dom(F )} . ∀α ∈ dom(b(F,A)), take

b(V,A)(α) =
∨

X∈dom(F )∩A,κX=α

F (X)

(Note this is a boolean sup, but a sup of non-zero things, so by completeness,
non-zero. That is, it is the common amount of information.)
Bemerkungen: Strengthening F,A strengthens b(F,A). If follows that {[b(F,A)]Ū : A ∈ U}
generates a filter on RCUlt(V,Ū)(κ, jŪ (κ)) (every two members having common re-
finement). Call this filter Fil(F ). For ease of notation, call this thing (the RC)
B0.
Claim: For all F and all b ∈ B0 there is F ∗ ≤ F so that either b ∈ Fil(F ) or
(¬b) ∈ Fil(F ∗).

Proof. Exercise. �

Claim For all F, there is F ∗ ≤ F so that Fil(F ∗) is an ultrafilter.

Proof. Exercise. Hint: How many boolean values are in B0? How closed is decreas-
ing this F modulo U? (κ+k+1-closed). So make sure to count elements and put
each one in or out. �

Now restrict P̄ so that [f ]U ∈ Fil(F ∗)19 which is an ultrafilter. Now P̄ has κ+-c.c.!
We want P to generate a generic for P̄. There is a natural order preserving map into
P̄ (though this is not a projection). Take X 7→ X ∩κ and take F 7→ b(F,dom(F ))..
However, this is still not good enough to induce a generic. We need some kind of
density condition.

18How do we do this? If j := jU : V −→M, then take Ū := {X ≤ κ : κ ∈ j(X)}
19“Things always live dual lives.” -S.
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Exercise: (Look at More Saturated Ideals) There is p∗ ∈ P below which the above
map is a “projection” (i.e., may need a different notion of projection). Refer to the
paper for more details.

Method 2: Define P̄ as above but f(α) ∈ C(α, κ). The idea: produce a filter on

the [f ]’s which is generic for CUlt(V,Ū)(κ, jŪ (κ)), starting with a model of GCH with
κ is κ+k-supercompact. Iterate Add(α, α+k+1) for α ≤ κ and lift an embedding
j : V −→M in a careful way so that a generic for CUlt(V [G],U)(κ, j(κ)) generates a

generic for CUlt(V [G],Ū)(κ, jŪ (κ)). We’ll examine this method more next time.

10. January 30

Review: From Magidor, we define V0 = V [〈κXn : n < ω〉, 〈gn : n < ω〉]. Our
goal is to describe a forcing for which these objects are generic. To that end we
defined P̄ where conditions were 〈α0, f0, α1, f1, . . . , αn−1, fn−1, f〉 where dom(f) ∈
Ū (ultrafilter gotten by projecting supercompactness measure) and f(α) ∈ C(α, κ).
This forcing should have the Prikry property, but is also collapses stuff above κ
(but for different reasons). We want to “fix” this forcing by altering it to make it
κ+-c.c. In order to preserve cardinals above κ, make the f ’s come from the filter.
We gave two ideas last time:

Method 1: Projection from supercompact version. Get a projection from P to
P̄.

Method 2: Make the f ’s come from a generic filter. (The filter from first method
probably not generic, just some random ultrafilter.) Goal: to build a generic H for

CUlt(V,Ū)(κ, jŪ (κ)) which is generic over Ult(V, Ū) (you’ll have no luck trying to do
this for V itself; but we only need to meet dense sets in this Ult anyway). If we
restrict P̄ to have f ∈ H, we get κ+-c.c.

Exercise: Prove that this version of P̄ satisfies the PL.

We’re going to build this generic today, but in a somewhat backwards way. We’ll
need the supercompactness to build this measure.

Let U be a supercompactness measure on Pκ(κ+k). Let Ū be the projection of
U to a measure on κ. Let’s assume that 2κ = κ+k+1.

Claim: There is H∗ which is generic for C := CUlt(V,U)(κ, jU (κ)) over Ult(V,U).
Note we are still working with the original ultrafilter U , not is projection Ū .

Proof. Let jU = j : V −→ M. M |= “C is κ+k+2-closed and has j(κ) maximal
antichains.” In V, C is κ+k+1-closed and has |j(κ)| antichains in M. How big is

|j(κ)|? We have |j(κ)| =
∣∣{F : Pκ(κ+k) −→ κ

}∣∣ = 2κ
+k

= κ+k+1. Build a decreas-
ing sequence meeting all maximal antichains in M. Then take the filter generated
by the decreasing sequence, namely, H∗. �
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Recall: ultrapower by Ū embedds naturally into ultrapower by U.

V M

M̄

jU

jŪ
i

i(CM̄ (κ, jŪ (κ))) = CM (κ, jU (κ)). Define H = {f ∈ C : i(f) ∈ H∗} . We hope that
H is generic.

Notice: if crit(i) > jU (κ), then i � CM̄ is the identity (pointwise image).

Claim: Assume GCH.20 and κ is κ+k-supercompact. If we iterate Add(α, α+k+1)
for α ≤ κ inaccessible, then in the extension, V [H], by this iteration, there is a
generic H∗ for j(iteration) and an embedding j : V [H] −→ M [H∗] so that for all
α < j(κ), there is f : κ −→ κ so that j(f)(κ) = α. (Recalling earlier diagram,
i([f ]) = jU (f)(κ).) In particular, crit(i) > j(κ).

Proof. First some notation. Let Pκ be the iteration up to κ and Q̇κ is a Pκ-name
for Add(κ, κ+k+1). Fix j : V −→ M witnessing that κ is κ+k-supercompact. Let

H = H0 ∗H1 be generic for the iteration Pκ ∗Qκ. Now j(Pκ) � (κ+ 1) ∼= Pκ ∗ Q̇κ
(with Easton support). Let Ṙ be such that j(Pκ) ∼= Pκ ∗ Q̇κ ∗ Ṙ. In V [H], R is
κ+k+1-closed and has |j(κ)|-many antichains. Build a generic H∗0 for j(Pκ) (which
includes H0 ∗H1) as before. This allows us to lift j : V [H0] −→M [H∗0 ] in V [H]21.
We want to lift to the extension by Qκ. Note that ∀γ < κ+k+1, j′′(H1 � γ) is in
M [H∗0 ]. Moreover,

⋃
j′′(H1 � γ) is a condition in j(Qκ). So as before, j(Qκ) is

κ+k+1-closed and has |j(κ)+k+1| = κ+k+1-many antichains in V [H].
Enumerate the antichains as 〈Ai : i < κ+k+1〉. EachAi is maximal in Add(j(κ), j(ξ))

for some ξ < κ+k+1 (comes from properties of the embedding). Let 〈αi : i < κ+k+1〉
increasing so that Ai is maximal in Add(j(κ), j(αi)). Build a decreasing sequence
in j(Qκ), 〈ri : i < κ+k+1〉 so that

(1) ri ∈ Add(j(κ), j(αi)),
(2) ri is below some member of Ai,
(3) ri ≤

⋃
j′′(H � αi),

(4) ∀α < αi, ri(j(α), κ) is the α-th element of j(κ). (Here view Add(j(κ), j(κ+k+1))
as partial functions from j(κ)+k+1 × j(κ) to j(κ). This is saying that if f
is α-th generic function, then j(f)(κ) is αth element of j(κ).)

Closure then finishes the proof. �

11. February 2

We’ll work towards the following theorem: if κ supercompact and α < ω1, then
there is a model where ℵω is strong limit and 2ℵω = ℵα+1.

Fix α < ω1 and δ limit such that α = δ+k for some k < ω. κ indestructibly super-
compact. Let Q = Add(κ, κ+α+1). Write δ =

⋃
n<ωDn, where 〈Dn : n < ω〉 is in-

creasing, with eachDn finite. Set Tn = {(β, γ) : β < γ ≤ δ and ∀ζ ∈ Dn, ζ /∈ (β, γ)} .

20“Going back to a primordial universe where we have GCH.”
21Recall the criteria for lifting: pointwise image of the first generic must be contained in second

generic.



PRIKRY FORCINGS, UNGER’S LECTURES 17

Then set
Cn :=

∏
(β,γ)∈Tn

Coll(κ+β , κ+γ).

and Rn = Q× Cn. Note that for n < m, Rn projects onto Rm.
Let λ = κ+α+2. Note in V [Rn], λ = κ+l for some l < ω. So by indesctructibility

there is a supercompactness measure U̇n on Pκ(λ) so that

Żn =
{
X : κX is inaccessible and ot(X) = κ+l

X

}
∈ U̇n.

For X ∈ Żn, let λX := ot(X) (= κ+l (see definition of Żn), but don’t need to keep
track of this l).

We define a forcing P. Conditions are of the form

〈r,X0, f0, X1, f1, . . . , Xn−1, fn−1, Ḟn, Ḟn+1, . . .〉.
22 with

(1) r ∈ R0.

(2) EachXi, fi are Ri-names (respectively) for an element of Żi and Coll(λ+
Xi
, <

κXi+1
) (if i < n−1) or Coll(λ+

Xi
, < κ) (if i = n−1). (Ri-names for elements

of V ).
(3) Xi ≺ Xi+1.

(4) Ḟi is an Ri-name for a function with dom(Fi) ∈ U̇i, and ∀x ∈ dom(Ḟi),
Fi(x) ∈ Coll(λ+

X , < κ).

For a condition p ∈ P, we write p = 〈fp, Xp
0 , f

p
0 , . . . , F

p
n , . . .〉. l(p) is the length

of p (which in this case is n). Define p ≤ q if

(1) l(p) ≥ l(q).
(2) rp ≤ rq. and rp 
 forces the rest of the following requirements.
(3) Xp

i = Xq
i for i < l(q) and

(4) fpi ≤ f
q
i for i < l(q)

(5) For i ∈ [l(q), l(p)), we have Xp
i ∈ dom(F qi ) and fpi ≤ F

q
i (Xp

i ).
(6) For i ≥ l(p), dom(F pi ) ⊆ dom(F qi ) and ∀x ∈ dom(F pi ), F pi (x) ≤ F qi (x).

Exercise: Does P collapse λ to be countable? Hint 1: Actually check to see if κ
is collapsed, since λ collapsed to be size κ. Try to code surjections from ω to κ?.
Hint 2: Probably.

Note throughout we are implicitly using projections of R0 into Ri since rp ∈ R0,
but the things rp forces are Ri-names.

We take an inner model of the forcing extension. Define V0 = V [A, 〈κXn , gn :
n < ω〉] where A is Q-generic, 〈Xn : n < ω〉 are the Prikry points and gn is generic
for Coll(λ+

Xn
, < κXn+1

).

12. February 4

Reminder of where we were and the notation we’ve been using.
κ is indestructibly supercompact. Had Rn ∼= Add(κ, κ+α+1) × Collapses. The

point: as n gets larger, collapses in Rn get less destructive. Conditions look like
〈r,X0, f0, X1, f1, . . . , Xn−1, fn−1, Ḟn, Ḟn+1, . . .〉23 where r ∈ R0 and each of the
other things are names corresponding to the index (ex: X1 is an R1-name; but

22In reality, everything besides r is a name (see definition), but we’ll be sloppy with notation.
23As mentioned in the previous footnote, we’ll continue to be sloppy with notation.
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projecting of R0 to R1, lets us view it is an R0-name, so that r can tell us some-
thing about it). Note further 
Rn “ dom Ḟn ∈ U̇n”. In the extension by Rn, λ is

a finite successor of κ and U̇n a measure on Pkκ(λ). (Rn tells which finitely many
cardinals after Prikry points are preserved; as n grows, we preserve more cardinals).

We had X ∈ Żn then above κX the Laver Preperation did a reflection of Rn.

Let’s try to get a capturing claim of sorts. More notation first:
(Recall) V0 = V [A, 〈κXn , gn : n < ω〉]. (A is generic for Add(κ, κ+α+1)) (How to

find out what Xn is? A long enough condition should help, but it is still Rn-name.
Thus, we need some fragment of the Rn-generic being added by R0; similarly,
information about gn is determined by what Xn is. Thus, we have an implicit
dependence on Rn.)

Last bit of notation: a V0-name is a P-name which is fixed by any automorphism
which fixes V0. For p ∈ P, let s(p), called the stem, be

s(p) := 〈X0, f0, X1, f1, . . . , Xn−1, fn−1〉;

Note: r is not part of the stem.

Claim: (Version 1 of a Capturing Claim) Let η̇ be a V0-name for an ordinal and
p ∈ P so that Rl(p) ∼= Q0×Q1 where Q0 is µ+-c.c. and Q1 is µ+-closed, for some µ.24

Then there is p∗ ≤∗ p 25 such that if q ≤ p∗ decides η̇, then (rq, s(q), F̄ p
∗
� [l(q), ω))

decides η̇ in the same way.
(Note: A proof was started today, but not finished. See below for a proof.)

13. February 6

We continue with the proof of the claim from last time.

Proof. 26 Let l(p) = l. We’ll construct sequences 〈rn|n < ω〉 and 〈〈Fnm|m ≥ l〉|n <
ω〉, forced to be decreasing.

Set r0 = rp and 〈F 0
m|m ≥ l〉 = 〈F pm|m ≥ l〉. To construct 〈Fn+1

m |m ≥ l〉 and
rn+1 from 〈Fnm|m ≥ l〉 and rn first enumerate stems 〈sα|α < µ〉 of length l + n
so that every “stem restricted to µ” is the restriction of some sα. (If a stem is
〈X0, f0, . . . , Xn−1, fn−1〉, its restriction to µ is 〈X0 ∩ µ, f0, . . . , Xn−1 ∩ α, fn−1〉.)
By the choice of l = l(p), Rl+n ∼= Q0 ×Q1 where Q0 is µ+-cc and Q1 is µ+-closed.
Now work through the sα’s, building inductively 〈Fn,αm |m ≥ l + n〉 and rn,α for
α < µ. At stage α + 1, build a maximal antichain B in Q0 and a decreasing
sequence in Q1, say with lower bound q1, such that for all q ∈ B there exists F̄q
such that ((q, q1), sα, F̄q) decides η̇ if possible. Find names Fn,α+1

m and rn,α+1 as
follows: rn,α+1 is rn,α strengthened by q and rn,α+1 
 F̄n,α+1 = F̄ q, where q is the
unique q ∈ B∩ the generic.

By closure of Q1, we can take a lower bound for the rn,α at limits (as we are
only changing the µ+-closed part of the condition along the way).

Now let rn+1 be a lower bound for rn,α and Fn+1
m be forced to by a mod Um

lower bound for Fn,αm (here using supercompactness measure and the fact that

24Make sure that this can happen for some µ’s. There are some other implicit dependences.

Hint: take some suitable µ not “overlapped” by Rl(p).
25As before ≤∗ is a direct extension, where we now are preserving length, but can refine r.
26See exercise from next time.
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λ+ > µ). Finally let rp
∗

= lower bound for 〈rn|n < ω〉 and F p
∗

m = lower bound for
〈Fnm|n < ω〉. Then let

An,αm =
{
x ∈ dom(Fn,α+1

m )|F p
∗

m (x) ≤ Fn,α+1
m (x)

}
and

Anm = ∆α<µA
n,α
m = {x| if s_α x is a stem, then x ∈ An,αm } .

Then set

Ap
∗

m =
⋂

l+n≤m

Anm.

Now set p∗ = (rp
∗
, s(p), F̄ p

∗
� 〈Ap∗m |m ≥ l〉). If q ≤ p∗ decides η̇ then there exists

an al < µ such that the restriction of s(q) to µ is sα (from stage l(q) − l(p) in
the construction), so there is a permutation Γ of λ, fixing µ, so that Γ(s(q)) = sα.
Since Γ fixes V0, Γ(q) decides η̇ in the same way as q. Hence, by construction
(rq, sα, F̄

p∗) decides η̇ (in the same way). (Note Γ is not touching the r0 coordinate
and does nothing to the constraining functions modulo a measure one set.) Thus
the following holds: (rq, s(q),Γ−1(F̄ p

∗
)) decides η̇ all in the same way. �

14. February 9

Exercise: Double check the α+1 stage in the construction from last time, correcting
any mistakes.

Claim: Suppose that ḃ is a V0-name for a function from µ to ordinals and p ∈ P
such that Rl(p) ∼= Q0×Q1. Then there is a p∗ ≤∗ p (i.e. a direct extension) so that

for all q, if q ≤ p∗, i ∈ top(s(q)),27 and q decides ḃ(i), then (rq, s(q), F̄ p
∗
� [l(q), ω))

decides ḃ(i) in the same way.

Proof. As before, but slightly more care taken at each stage. �

Claim: Cardinals above κ are preserved in V0.

Proof. Note, if µ is a successor above κ, then for all large enough m, Rm ∼= Q0×Q1

where Q0 is µ+-cc and Q1 is µ+-closed (the idea here is that as m grows, we are

getting rid of more collapses, so eventually don’t overlap µ). Let ḃ be a name for a
function from µ into On. Choose p so that Rl(p) factors as above. Get p∗ from the
previous claim (so p∗ ≤∗ p). We want to show that |A| ≤ µ, where for any fixed i,

A =
{
α|∃q ≤ p∗, q 
 ḃ(i) = α

}
. Suppose not, and for α ∈ A, choose qα 
 ḃ(i) = α.

We can assume i ∈ top(s(qα)) for each α (just extend more if necessary). By the
previous claim, we can also assume that F̄ qα = F̄ p

∗
� [l(qα), ω). We can further

assume (trimming A as necessary while preserving its size):

• l := l(qα) = l(qα′) for all α, α′ ∈ A
• ∀i < l, xqαi ∩ µ = x

qα′
i ∩ µ and fqαi = f

qα′
i for all α, α′ ∈ A.

What about the r parts (i.e. the parts from R0)? In fact, we can find α, α′ so that
rqα‖rqα′ .28

27Recall that s(q) = the stem of q, and the top of a stem is the top Prikry point.
28Exercise: Fill in the details of this fact.
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From here, any permutation Γ of λ fixing µ and sending xqαi to x
qα′
i for i < l (and

such permutations do exist) gives a contradiction. In particular, we have Γ(qα)‖qα′
but Γ(qα) 
 ḃ(i) = α while qα′ 
 ḃ(i) = α′. �

Notation: let s−(q) = s(q) without the topmost collapse.
We’ll prove the following next time:

Claim: Let η̇ be a V0-name (i.e., name fixed by any automorphism that fixes V0)
for an ordinal and p∗ ∈ P be as in Round 1. Then there is p∗∗ ≤∗ p∗ so that ∀q
if q ≤ p∗∗ decides η̇, then so does (rq, s−(q)_〈F p

∗∗

l(q)−1(top(s(q)))〉, F̄ p∗∗ � [l(q), ω)),

and in the same way.

15. February 11

Recall that conditions look like: 〈r,X0, f0, . . . , Xn−1, fn−1, Fn, Fn+1, . . .〉 except
everything in sight is an Rn-name, r ∈ R0, and you can decide stuff about these
names by refining r (using R0 projects on to Rn).

Claim: Let η̇ be a V0-name (i.e., name fixed by any automorphism that fixes V0)
for an ordinal and p∗ ∈ P be as in Round 1. Then there is p∗∗ ≤∗ p∗ so that ∀q
if q ≤ p∗∗ decides η̇, then so does (rq, s−(q)_〈F p

∗∗

l(q)−1(top(s(q)))〉, F̄ p∗∗ � [l(q), ω)),

and in the same way.

Proof. Enumerate all stems (without their topmost collapses) 〈sα : α < λ〉. Build
〈Fαm : m ≥ l(p∗)〉 for α < λ. Let’s let l := l(p∗). At the beginning, set 〈F 0

m : m ≥ l〉 =
〈F p∗m : m ≥ l〉.At stage α+1, consider the condition (rp

∗
, s_α F

α
l(sα)−1(top(sα)), F̄ p

∗
�

[l(sα), ω)). If there is an extension of rp
∗

and Fαl(sα)−1(top(sα)) so that the strength-

ened condition decides η̇, then we only needed to extend rp
∗

by some condition in
Rl(sα)−1. (All true R0-names are fixed at this point) Build a maximal antichain B
in Rl(sα)−1 and conditions fr for r ∈ B such that so that strengthening the above

condition by r, fr decides η if possible. We make Fα+1
l(sα)−1(top(sα)) by amalgamat-

ing the conditions fr for r ∈ B to get a name (if an extension as above doesn’t
exist, then use the original condition as the name).29

At limits γ, we want to know that F γm(y) exists for all m and y ∈ dom(F p
∗

m )
(strengthened when y is top of some sα). The sequence 〈Fαm(y) : α < γ〉 decreases
when top(sα) = y. How many such α’s are there? At most λY such α’s; this follows

from λ<κYY = λY . (Recall λY = otp(Y ) = κ+l
Y for some l.) Each Fαm(y) is forced to

be in Coll(λ+
Y , < κ). So pick a name F γm(y) for a lower bound.

Let 〈F p∗∗m : m ≥ l〉 be a lower bound for the whole construction. Let p∗∗ =
〈rp∗ , s(p∗), F̄ p∗∗〉. If q ≤ p∗∗ decides η̇, then let α be such that s−(q) = sα.
Then we get 〈rq, s(q), F̄ p∗∗ � [l(q), ω)〉 decides η̇ (as the upper part is univer-
sal). This implies that there were extensions deciding η̇ at stage α + 1 of the
contruction. Any r ∈ B with r‖rq must give the same decision. So we get

〈rq, s−(q)_F p
∗∗

l(sα)=1(top(sα)), F̄ p
∗∗〉 decides η̇. �

Claim: Let η̇ be a V0-name for either 0 or 1, and p∗∗ as in the previous claim. There
is a direct extension p∗∗ which decides η̇.

29That is, the name is such that if r is the unique condition in B and the generic, then r forces
it to be fr
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Proof. Let 〈tα : α < λ〉 enumerate all stems. For x � tα, define (names for measure
one sets) η̇α,x to be an Rl(tα)-name for some ordinal < 3 so that

• η̇α,x = 0 if ∃r ∈ gl(sα) (here g is generic) so that 〈r, t_α 〈x, F p
∗∗

(x)〉, F̄ p∗∗〉
forces η̇ = 0,
• η̇α,x = 1 if ∃r ∈ ... forces η̇ = 1̇,
• η̇α,x = 2 if no such r decides η̇.

This gives a name for a partition of such X. For i = 0, 1, 2, Ȧiα = {X : ηα,X = i} .
Let A∗α be a name forced to be equal to one of the Aiα (the measure one set). Then
take the diagonal intersection ∆A∗α.

30 �

Exercise: Show that bounded subsets of κ come from finite products of collapses in
the stem.

16. February 13

General framework for collapsing cardinals: Given a poset P and λ < µ both
regular, if there is a sequence 〈Aα : α < λ〉 of antichains of size µ with enumerations
〈piα : i < µ〉 such that ∀i < µ,

{
p : (∃α) p ≤ piα

}
is dense, then P adds a surjection

from λ onto µ. Define ḟ(α) to be the unique i so that piα ∈ Ġ if it exists. (Note, it

may not exists, i.e. f may be a partial surjection.) So ḟ names a (partial) surjection
from λ onto µ.

In a Prikry-type setting, get some An for n < ω where |An| = κ (say, maybe
have κ-many choices for nth Prikry point) with the property above.

Diagonal Prikry Forcing

Let 〈κn : n < ω〉 be an increasing sequence of measurable cardinals and 〈Un : n <
ω〉 a sequence of ultrafilters (not necessarily normal) such that Un is a κn-complete
ultrafilter on κn. Let κ := supn κn.

We define a poset P = P~U . Conditions are 〈α0, α1, . . . , αn−1, An, An+1, . . .〉 such
that for all i < n, αi ∈ (κi−1, κi) (and set κ−1 = ω) and for i ≥ n, Ai ∈ Ui. For
p ∈ P, we write p = 〈αp0, α

p
1, . . . , α

p
n−1, A

p
n, A

p
n+1, . . .〉, where l(p) = n (the length of

p) and we set p ≤ q if

• l(p) ≥ l(q)
• if i < l(q), then αpi = αqi
• if i ∈ [l(q), l(p)), then αpi ∈ A

q
i

• and if i ≥ l(p), then Api ⊆ A
q
i .

Claim: P satisfies the strong Prikry Lemma.

Proof. (Sketch) For all stems s, get ~As (measure one sets Al(s), Al(s)+1, . . .) so that

(s, Ās) ∈ D if possible. For n < ω, get

~An =
⋂

l(s)=n

~As (intersecting pointwise)

and
~A∗ =

⋂
~An (intersecting “almost” pointwise).

30We’re being sloppy here, probably want to deal with stems of each length separately.
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Then define inductively

Y0 :=
{
s : (s, ~A∗) ∈ D

}
and Yn+1 =

{
s : (∃A ∈ Ul(s)) (∀α ∈ A) s_〈α〉 ∈ Yn

}
.

We have enough closure to intersect measure one sets witnessing membership (and

non-membership) of each s in each Yn to get ~A∗∗. If q ≤ (∅, Ā∗∗) with q ∈ D, all
l(q)-step extensions of (∅, Ā∗∗) are in D. �

Corollary: P doesn’t add any bounded subsets of κ := supn κn.

Claim: P has the κ+-c.c.

Proof. Note that there are κ-many stems, and two conditions with the same stem
are compatible. �

Let U, Ū be ultrafilters on κ; we define the Rudin-Keisler ordering: Ū ≤RK U if
there exists f : κ −→ κ such that A ∈ Ū iff f−1(A) ∈ U. In particular, Ū ≤RK U
implies:

• For all B ∈ Ū , {α : f(α) ∈ B} ∈ U (just definition of inverse image).
• For all A ∈ U, f ′′A ∈ Ū .

Thus, in some sense, U is stronger than Ū .
Let 〈κn : n < ω〉 be as before. Let 〈Un : n < ω〉 and 〈Ūn : n < ω〉 be sequences

of ultrafilters such that each Un, Ūn is on κn. Now if Un ≥RK Ūn for all n < ω
as witnessed by fn : κn −→ κn, and if 〈αn : n < ω〉 is P〈Un:n<ω〉-generic, then
〈fn(αn) : n < ω〉 is P〈Ūn:n<ω〉-generic. (Need a new characterization of genericity
here: for any ω-sequence of measure one sets coming from the κn, the Pirkry
sequence is in a tail of this sequence.)

17. February 18

Assume GCH.
Goal: Coherently add many ω-sequences to a singular cardinal using ideas from
projections between diagonal Prikry forcings.

Recall we had Ūn ≤RK Un with P〈Un:n<ω〉 projecting onto P〈Ūn:n<ω〉. Need a
coherent collection of measures, but that’s what an extender is!
Setup: 〈κn : n < ω〉 increasing sequence of regular cardinals with supn κn = κ. For
the first construction each κn was measurable. This time we develop “extender-
based forcing with long extenders.” Fix λ > κ+.31 We assume for each n < ω
there is jn : V −→ Mn with crit(jn) = κn and κnMn ⊆ Mn, Vλ+1 ⊆ Mn and
jn(κn) > λ.32 Define for α < λ

Enα = {X ⊆ κn : α ∈ jn(X)}
a measure on κn. Notice that Enκn is the usual normal measure on κn, and all Enα
are non-principle and κn-complete.

Definition: We say α ≤n β if there is f : κn −→ κn so that jn(f)(β) = α.

We claim that α ≤n β implies Enα ≤RK Enβ as witnessed by f. Fix X ⊆ κn.
Then X ∈ Enα iff α ∈ jn(X) iff jn(f)(β) ∈ jn(X) iff β ∈ jn(f)−1(jn(X)) (inverse

31λ is our target number of ω-sequences to add.
32Probably want each κn to be λ+ 1-strong.
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image) iff β ∈ jn(f−1X) iff f−1X ∈ Enβ .

Exercise: Determine a sense in which the direct limit of Ult(V,Enα) for α < λ
captures the properties of Mn.

Claim ≤n is κn-directed.33

Proof. Enumerate κ<κnn in ordertype κn, say 〈aα : α < κn〉, so that for all regular
δ < κn and all X ⊆ δ of size < δ, X is enumerated unboundedly often below δ
(Using GCH). So jn(〈aα : α < κn〉) � λ has the above property with “δ = λ”. Call
this sequence 〈aα : α < λ〉. (Note there is no confusion because of the critical point.)
Fix a ⊆ λ with |a| < κn and α < λ so that a = aα. Notice that we can choose α as
large as we please. We claim that ∀γ ∈ a, γ ≤n α. Consider the diagram

Mn

V Mα
∼= Ult(V,Enα)

iα

jn κα

with kα([f ]Enα) = j(f)(α). So aα = jn(〈aα : α < κn〉)(α) = kα(−). Since |aα| <
κn, there is b ∈ Mα so that kα(b) = k′′αb = aα (as crit(kα) ≥ κn). Choose γ∗

so that kα(γ∗) = γ. Pick f so that [f ]Enα = γ∗. We check that jn(f)(α) = γ:
jn(f)(α) = kα([f ]Enα) = kα(γ∗) = γ. �

Note: There were unboundedly many α’s that we could have chosen. To we can
witness directedness with an ordinal as large as we please.

Some notation: for α ≤n β, fix πβα = πnβα witnessing this (the “n” will be clear

from context).

Claim A: If α < β and α, β ≤n γ, then {ν < κn : πγα(ν) < πγβ(ν)} ∈ Enγ .

Proof. We check that jn(πγα)(γ) < jn(πγβ)(γ). But the first is α and the second is
just β. �

Claim B: If α ≤n β ≤n γ, then {ν < κn : πβα(πγβ(ν)) = πγα(ν)} ∈ Enγ .

Proof. We check that jn(πβα(πγβ))(γ) = j(πγα)(γ). The RHS is just α. The LHS
is jn(πβα)(jn(πγβ)(γ)) = jn(πβα)(β) = α. �

We’ll try to add λ-many ω-sequences. Some of them will be controlled by 〈Enα :
n < ω〉, but we’re not going to control all possible α’s.

18. February 20

Recall: have a sequence 〈κn : n < ω〉 increasing and supn κn = κ. For each
n < ω, we have jn : V −→ Mn with crit(jn) = κn and jn(κn) > λ, κnMn ⊆ Mn

and Vλ+1 ⊆ Mn (where λ is target number of λ-sequences that we wish to add).
We defined

Enα := {X ⊆ κn : α ∈ jn(X)} .
This is still a κn-complete, non-principal ultrafilter.

33More is true but this is enough.
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We’re trying to add many diagonal Prikry sequences corresponding to 〈Enα :
n < ω〉.

Definitions: (see Gitik)

(1) Qn1 := {f : |f | ≤ κ ∧ f is a partial function from λ to κn}, ordered by ex-
tension. This is a Cohen poset (adding λ-many subsets of κ+, instead of
the usual “2,” we have “κn”).

(2) Qn0 : conditions are triples (a,A, f) such that
• f ∈ Qn1;
• a ⊆ λ, |a| < κn, and a ∩ dom(f) = ∅;
• a has a ≤n-maximal element, mc(a);
• A ∈ En,mc(a);

• ∀α, β ∈ a if α ≤n β, then for all ν ∈ A34

πmc(a),α(ν) = πβα
(
πmc(a),β(ν)

)
.

(This is possible by Claim B.)
• For every α < β with α, β ∈ a and for all ν ∈ A, we have

πmc(a),β(ν) > πmc(a),α(ν)

(This is possible by Claim A.)
• We declare (a,A, f) ≤ (b, B, g) if

– a ⊇ b;
– f ≤ g;
– π′′mc(a),mc(b)A ⊆ B.

(3) Our diagonal Prikry forcing will be denoted P. Conditions are of the form

p = 〈f0, f1, . . . , fn−1, 〈an, An, fn〉, 〈an+1, An+1, fn+1〉, . . .〉

such that
(a) fi ∈ Qn1 for i < n;
(b) (ai, Ai, fi) ∈ Qn0 for i ≥ n;
(c) For i > j ≥ n, then ai ⊇ aj .

As usual, n = l(p) and we will write p = 〈fp0 , f
p
1 , . . . 〈apn, Apn, fpn〉 . . .〉. We

define p ≤ q if
• For i < l(q), fpi ≤ f

q
i ;

• For i ∈ [l(q), l(p)), fpi ≤ fqi , fpi (mc(aqi )) ∈ A
q
i , and ∀γ ∈ aqi , f

p
i (γ) =

πmc(aqi ),γ
(fpi (mc(aqi ))).

• For i ≥ l(p), (api , A
p
i , f

p
i ) ≤ (aqi , A

q
i , f

q
i )

A helpful definition: if p ∈ P and ν ∈ Apl(p), then we say p_ν is the weakest

condition p∗ of length l(p) + 1 where

fp
∗

l(p) = fpl(p) ∪
{

(γ, πmc(ap
l(p)

),γ(ν)) : γ ∈ apl(p)
}

(recall apl(p)∩dom(fpl(p)) = ∅) and everything else is fixed. We similarly define p_~ν

for ~ν = 〈ν0, . . . , νk〉.

As usual, p ≤∗ q iff p ≤ q and l(p) = l(q).

34Think of ν as a reflection of the maximal coordinate.
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Claim: P satisfies the strong Prikry Lemma.

Other things to think about for next time: generically, for each n < ω, we’ll have
a Fn : λ −→ κn: define tα(n) = Fn(α). If α ∈ dom(fpi ) for all i, then tα ∈ V. On
the other hand, if α ∈ api for some i (so in larger ones too), then tα /∈ V.

19. February 23

We’ll start by trying to get intuition about what’s going on. In the background,
we have 〈κn : n < ω〉 with supκn = κ. We are planning to add λ-many cofinal
ω-sequences. We’ll add functions Fn : λ −→ κn and define tα : ω −→ κ by tα(n) =
Fn(α) (think of this as a λ×ω-matrix). Note tα(n) < κn, so each tα ∈

∏
n κn. Some

of these sequences will be new, and some will be old. The point of the forcing: to
carefully control which are new and which are old (i.e., in V ).

The definition of P is to make some tα’s new and some old. The new tα are
going to be Prikry sequences in 〈Enα : n < ω〉 (diagonal Prikry sequences, using
more-and-more complete measures). When is tα new? Consider (a,A, f) ∈ Qn0. tα
is new when α ∈ a for some generic condition. Recall that if i < j, then ai ⊆ aj
by definition of being a condition. So if you’re controlling α at some coordinate,
you’re controlling it at all future conditions, hence adding a Prikry sequence.

Consider a condition 〈f0, f1, . . . , fn−1, 〈an, An, fn〉, . . .〉; the question remains:
how do we take a (an, An, fn) and output some function f ′n?

Easy Fact: ∀p, q ∈ P, if p ≤ q, then ∃!~ν such that p ≤∗ q_~ν.

Claim: P satisfies the strong Prikry Lemma.

Claim 1: Let D ⊆ P be dense open, and p ∈ P. Then there is a p0 ≤∗ p so that for
all q ≤ p0 with q ∈ D, q � l(q)_p0 � [l(q), ω) ∈ D.

Proof. (Sketch) By induction on n < ω. Construct a ≤∗-decreasing sequence 〈qn :
n < ω〉 with q0 = p, and where qn+1 diagonalizes over possible (n + 1)-step ex-
tensions of qn. Suppose we’re given qn for some n < ω. Enumerate (n + 1)-step
extensions 〈~να : α < κl(p)+n〉. We construct 〈qn,α : α < κl(p)+n〉 which are ≤∗-
decreasing. q0,n := qn. At stage α + 1, ask: is there a direct extension q of q_n,α~να
such that q ∈ D? We get qn,α+1 by strengthening qn,α as follows:

• It has fqi for i < l(p) = l(qn,α);
• fqi � (λ\aqn,αi ) for i ∈ [l(q), l(q) + n+ 1);
• (aqi , A

q
i , f

q
i ) for i ≥ l(q) + n+ 1.

This completes the successor step. At limits, we have enough closure to take lower
bounds. The f -parts are κ+-closed, and Qi0 is κi-closed.

Now let qn+1 be a ≤∗-lower bound for 〈qnα : α < κl(p)+n〉. Finally, let p0 be a
≤∗-lower bound for 〈qn : n < ω〉. �

20. February 25

Recall we were on our way to proving the strong Prikry Lemma last time.
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Claim 2:35 Let D be dense open, and let p0 be as in the Claim 1 from last time.
There are 〈pm : m < ω〉 and sets 〈Ym : m < ω〉 so that

Y0 = {q � l(q) : q � l(q)_p0 � [l(q), ω) ∈ D} ,
and Ym+1 is the set of initial segments of conditions such that there is a measure
one set of trivial, one-step extensions that get into Ym. Note the witnessing measure
one set above depends implicitly on pm. The above are such that ∀m ≥ 1, if q ≤ pm
and q � l(q) ∈ Ym−1, then q � (l(q)− 1)_(trivial one-step extension) ∈ Ym−1.

Proof. (Sketch) By induction on m < ω. By definition p0 is the p0 from Claim
1. At stage m + 1, to construct pm+1, we construct a sequence 〈pnm : n < ω〉 by
induction. pn+1

m diagonalizes over all n-step extensions of pnm. Note: everything
here is ≤∗-decreasing.

Enumerate these as 〈~να : α < κl(p)+n−1〉. Induct over α. 〈pn,αm : α < κl(p)+n−1〉.
At stage α + 1, consider (pn,αm

_~να) � (l(p0) + n − 1) (restrict to length). Ask: is
there an extension of of the above condition which is in Ym? If yes, strengthen the
f -parts of pn,αm by this extension to get pn,α+1

m . Note: closure is no problem since
each of the f -parts are κ+-closed. This is enough to finish the claim. �

Let pω be a ≤∗-lower bound for 〈pm : m < ω〉. Intersect the measure one sets wit-
nessing that pω

_~ν �(its length)∈ Ym (or not) for each m. Let pω+1 be pω restricted
to measure one sets. If q ≤ pω+1 and q ∈ D, then every n := (l(q)− l(pω+1))-step
extension of q � l(pω+1)_pω+1 � [l(pω+1), ω) is in D. Argue along the way that
q � l(q) ∈ Yn. This proves the strong Prikiry Lemma.

Now we show that κ and κ+ are preserved.

Corollary 20.1. No bounded subsets of κ are added. Hence κ is preserved.

Corollary 20.2. κ+ is preserved.

Proof. Assume for a contradiction that ḟ : µ −→ κ+ is a name for a function which
is cofinal, with µ < κ. Choose p so that κl(p) > µ. Apply the strong Prikry Lemma

for each α < µ to Dα :=
{
q ∈ P : q decides ḟ(α)

}
. Then get a p∗ which works for

each such α, and an nα such that every nα-step extension of p∗ decides ḟ(α). Note
that there are κl(p)+nα sequences ~ν of length nα that can be added. This implies

that the range of ḟ is bounded. �

Exercise: Characterize genericity for P.

Claim: P has the κ++-c.c.36

Proof. Fix 〈pα : α < κ++〉. Assume they all have the same length. Form a ∆-system
out of the domains ⋃

i<ω

dom(fpαi ) ∪
⋃

j≥l(pα)

apαj : α < κ++

 .

35This is a derivative process of sorts, similar to the one used for Magidor’s forcing.
36P is in fact Knaster.
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Fix the values of the fpαi �(root of the ∆-system). Note we are using GCH to
do both of these. Now take α, α′. For each i, fpαi ∪ f

pα′
i is a condition, and for

each j ≥ l(pα) = l(pα′), we can take γj which is ≥j-greater than apαj , a
pα′
j and

which is not in the domain of f
pα′
j . Let’s define q ≤ pα, pα′ by fqi = fpαi ∪ f

pα′
i ,

aqj = {γj} ∪ apαj ∪ a
pα′
j , and Aqj is in Ejγj such that πγj ,mc(apαj )

′′Aqj ⊆ Apαj and

similarly for α′. �

21. February 27

Finishing up the extender-based forcing. Recall conditions looked like

〈f0, f1, . . . , fn−1, 〈an, An, fn〉, 〈an+1, An+1, fn+1〉, . . .〉.
Going to approximate a sequence Fn : λ −→ κn for n < ω. Each fi is a κ-sized
approximation to this Fi.

Recall, tα : ω −→ κ, and tα(n) = Fn(α) so tα ∈
∏
n κn

37. For this forcing to be
interesting, we take λ ≥ κ++.

Claim: P adds λ-many cofinal ω-sequences in κ.

Proof. We prove that ∀α < λ, ∃β > α such that ∀γ < β, tγ <∗ tβ (i.e,. un-
boundedly many are Prikry generic). Fix a condition p ∈ P and α < λ. Choose

β > sup dom(fpn), sup apn. Form a condition p∗ ≤∗ p with β ∈ ap
∗

i for i ≥ l(p∗). We
claim that this β works. Fix γ < β. There are two possibilities for this γ : either
for some q ≤ p∗, γ ∈ dom(fqi ) for all large enough i, or for some q ≤ p∗, γ ∈ aqi for
all large enough i.

Case 1 : γ ∈ dom(fqi ) for all large enough i. This implies that tγ ∈ V, since
it’s values are determined on a tail end by the f ’s. For large enough i, we can
choose Ai ∈ En,mc(aqi )

so that ∀ν ∈ Ai, πmc(aqi ),β
(ν) > tγ(i). Then q 
 “for all large

itmc(aqi )
(i) ∈ Ai”. So it forces that tβ(i) > tγ(i) for all large enough i.

Case 2 : γ ∈ aqi for all large enough i. Similarly, for all large enough i, we can
choose Ai ∈ En,mc(aqi )

so that ∀ν ∈ Ai, πmc(aqi ),β
(ν) > πmc(aqi ),γ

(ν) (this is a clause

in the definition of P). Use the same argument as in Case 1 to finish. �

Exercise: Modify P so that |fn| ≤ κn. Prove that this collapses κ to be countable.

22. March 2

Question: Do extender-based forcings (like the one we talked about) force strong

weak-square principles?38

Question: (Woodin, 1980’s) Is it consistent that SCH fails at some κ and κ+ has
the tree property? In particular, does this hold for ℵω?

Theorem 22.1. (Gitik-Sharon) If κ is supercompact, then there is a forcing exten-
sion in which κ is singular, strong limit, 2κ = κ++, and κ+ /∈ I[κ+]. In particular,
there are no special κ+-trees in the extension.

Theorem 22.2. (Cummings-Foreman) In the Gitik-Sharon model, there is a bad
scale of length κ+, which implies that κ+ /∈ I[κ+].

37Although these do not form a scale, generic ones “look much like” a scale
38S. thinks answer is “not always” though maybe the one we talked about does.
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Exercise: Learn the following definitions and prove:

�∗µ =⇒ µ+ ∈ I[µ+] =⇒ “All scales of length µ+ are good”.

Theorem 22.3. (Neeman) From ω-supercompact cardinals, we can improve the
Gitik-Sharon result to get the tree property at κ+.

So this answer’s Woodin’s question for some random singular cardinal. Collaps-
ing κ to ℵω2 was done in the original Gitik-Sharon model.

Exercise: Prove there is a bad scale at ℵω2 in the collapsed Gitik-Sharon model.39

Getting κ = ℵω2 with the tree property at κ+ is a result of Sinapova.

Gitik and Sharon’s Poset

Let κ be supercompact and U a normal measure on Pκ(κ+ω+1). Define Un to
be the projection of U to Pκ(κ+n). Note: the completeness of each of the Un is κ.
Thus we’ll need to use normality to take lots of diagonal intersections.

Conditions in P look like 〈χ0, χ1, . . . , χn−1, An, An+1, . . .〉. Let

Zi =
{
X ∈ Pκ(κ+i) : X ∩ κ ∈ κ and otp(X) = (X ∩ κ)+i

}
∈ Ui.

Conditions must satisfy:

(1) For i < n, Yi ∈ Zi;
(2) ~X is ≺-increasing where X ≺ Y if |X| < κY and X ⊆ Y ;
(3) Ai ∈ Ui ∩ P(Zi) for i ≥ n.

Usual conventions: l(p) = n, and we write p = 〈Xp
0 , X

p
1 , . . . , X

p
n−1, An, An+1, . . .〉.

p ≤ q if

• l(p) ≥ l(q);
• ∀i < l(q), Xp

i = Xq
i ;

• ∀i ∈ [l(q), l(p)), Xp
i ∈ A

q
i ;

• ∀i ≥ l(p), Api ⊆ A
q
i .

Exercise: P satisfies the (strong) Prikry Lemma. Also find a characterization of
genericity.

Therefore, no bounded subsets of κ are added.

Claim: κ+ω is collapsed to be size κ.

Proof.
⋃
Xn = κ+ω by genericity (so κ+ω is a countable union of sets of size

≤ κ). �

Note: if we had started with 2κ = κ+ω+2, then we get ¬SCH in the extension
since 2κ = κ++ in the extension.

Claim: P has the κ+ω+1-c.c.

Proof. There are just κ+ω-many stems. �

39This exercise will make more sense later.
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Claim: There is a bad scale of length κ+ in
∏
n κ

+n+1
Xn

. Hence, κ+ /∈ I[κ+] and
there are no special Aronszajn trees.

Recall some definitions: if f, g ∈
∏
n µn where 〈µn : n < ω〉 is increasing sequence

of regular cardinals with µ := supn µn, we write f <∗ g to mean that for all large
enough n, f(n) < g(n). A sequence 〈fα : α < µ+〉 is a scale if it is increasing and
cofinal in (

∏
n µn, <

∗).

Theorem 22.4. (Shelah) Scales exist.

A point γ < µ+ is good for the scale ~f if there are n < ω and A ⊆ γ unbounded
s.t. (∀n ≥ N) 〈fα(n) : α ∈ A〉 is strictly increasing.

Exercise: γ is good iff there is a sequence 〈Hi : i < cf(γ)〉 which are pointwise
increasing so that

• (∀α < γ) (∃i)
[
fα <

∗ Hi

]
;

• (∀i < cf(γ)) (∃α < γ)
[
Hi <

∗ fα
]
.

“ ~H is cofinally interweaved with ~f � γ.”

A good scale is a scale with club-many good points. (Note: every point of cofi-
nality ω is good.) A scale is bad if it is not good, i.e., there is a stationary set of
non-good points.

Theorem 22.5. (Shelah) If κ is κ+ω+1-supercompact, then any scale in
∏
n κ

+n

of length κ+ω+1 is bad.

Proof. Fix a scale ~f of length κ+ω+1 in
∏
n κ

+n and j : V −→ M witnessing that
κ is κ+ω+1-supercompact. In M, let γ = sup j′′κ+ω+1 < j(κ+ω+1). We show that

γ is not good for j(~f) in M. Standard reflection arguments then give a stationary
set of bad points below κ+ω+1. Let H be n 7→ sup j′′κ+n ≤ j(κ+n). Note that

j(~f) � γ is cofinal in
∏
n<ωH(n). H is what is called an exact upper bound (eub)

of non-uniform cofinality. This then precludes γ from being good. So γ is bad,
completing the proof. �

23. March 4

Today we’ll work towards proving the following claim:

Claim: There is a bad scale in the extension.

Fix a scale ~f in
∏
n κ

+n+1 of length κ+ω+1. Reflect it to a scale in
∏
κ+n+1
Xn

. Fix

F γn for γ < κ+n+1 so that [F γn ]Un = γ. In the extension by some P-generic sequence

〈Xn : n < ω〉, we define gα(n) = F
fα(n)
n (Xn).

We first claim ~g is a scale. We show ~g is (i) <∗-increasing and (ii) cofinal.

For (i), fix α < β < κ+ω+1 = κ+ =: µ. Then for all large enough n, fα(n) <

fβ(n) so for all large enough n, [F
fα(n)
n ]Un < [F

fβ(n)
n ]Un . So for all large enough

n, ∃An ∈ Un,∀x ∈ An, F fα(n)
n (x) < F

fβ(n)
n (x) and Xn ∈ An, (for large enough n),
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hence we’re done.

Next we show (ii), that ~g is cofinal. But first we need a lemma:

Lemma: (Bounding) ∀g ∈
∏
κ+n+1
Xn

, there is a sequence 〈Hn : n < ω〉 (where

Hn : Pκ(κ+n) −→ On) from V so that for all large n, g(n) < Hn(Xn), and for all
x, Hn(x) < κ+n+1

X (equivalently, [Hn] < κ+n+1).

Proof. Given a stem ~X of length n + 1, then there is a sequence of measure one

sets Ā ~X so that ( ~X, Ā ~X) decides ġ(n). This is because (roughly)

~X 
 ġ(n) < κ+n+1
Xn

where ~X = 〈X0, X1, . . . , Xn〉. Lets call this value γ ~X . Now we define

Hn(X) = sup
{
γ ~X : ~X ends with X

}
< κ+n+1

X .

Now we capture the measure one sets. Take some diagonal intersections to get Ā∗.
Then for all large n, Xn ∈ A∗n =⇒ for all large n, ġ(n) < Hn(Xn). �

Fix a name ġ for an element of
∏
κ+n+1
Xn

. We then get 〈Hn : n < ω〉 as in
the lemma. Now choose α s.t. (n 7→ [Hn]Un) <∗ fα. Then it is easy to check that
this works, i.e., that ġ <∗ (n 7→ Hn(Xn)) <∗ gα. Hence ~g is cofinal, and thus a scale.

We now want to show that ~g is bad. Let S =
{
γ < µ : γ is bad for ~f

}
. Since κ is

supercompact, S is stationary. By chain conditions on our poset40, S is stationary

in V [ ~X]. Therefore, it is enough to show that if γ is good for ~g in V [ ~X], then γ is

good for ~f in V.
We need another lemma:

Lemma: In V [ ~X], ∀γ ω < cf(γ) < κ, ∀A ⊆ γ unbounded, there is B ⊆ A unbounded
with B ∈ V.

Proof. In the extension, write

A =
⋃
n<ω

{
α : (∃p ∈ G ~X)

[
length n ∧ p ` α ∈ Ȧ

}
.

One of these sets is unbounded in the extension, since κ > cf(γ) > ω. Fix such
an n < ω. We can then work in V to make a condition of length n forcing an
unbounded set (from V ) into A. (Note ω < cfV (γ) < κ.) �

We can now show if γ is good for ~g in V [ ~X], then γ is good for ~f in V. Let γ be
good for ~g witnessed by A,N. By the lemma we get B ⊆ A unbounded with B ∈ V.
Take a condition p forcing this. We can assume N ≤ l(p). Then ∀α ∈ B ∩ β and
all n ≥ l(p), {

X : F fα(n)
n (X) > F

fβ(n)
n (X)

}
⊇ Apn.

This implies that [F
fα(n)
n ]Un < [F

fβ(n)
n ]Un as witnessed by the measure one set

above. So fα(n) < fβ(n) for all α < β from B and n ≥ l(p). But this is the

definition of γ being good for ~f.

40P is µ-c.c.
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Hence we have shown that there is a bad scale in the extension as claimed.

Remark: Suppose we had Hα : κ −→ κ so that j0(Hα)(κ) = α for α < κ+ω+1. (Re-
call j0 is the ultrapower embedding via the normal measure U0, i.e., the projection

onto Pκ(κ).) Given a scale ~f as before, we can now define gα(n) = Hfα(n)(κXn).
This works as before, giving a bad scale.

24. March 6

“Guiding principle”41: If we have a Prikry sequence 〈κn : n < ω〉 and the forcing
collapses κ+α

n for some α and all large n, then the forcing poset collapses κ+α.

How do we add collapses to the Gitik-Sharon poset? The natural thing to do
using the guiding principle is to preserve κω+1

n for all n < ω.

Question: Why might the guiding principle be true? Have F : Pκ(κ+k) −→
Collapses which constrains collapses in the stem. The Prikry forcing typically
incorporates

(
{

[F ]U : F : Pκ(κ+k) −→ Collapses
}
,≤U ).

If we are working in a closed enough ultrapower, if{
X : F (X) is in a poset that collapses κ+α

X

}
∈ U,

then the forcing poset of classes [F ] collapses κ+α.

A vague description of Gitik-Sharon forcing with collapses: conditions look like

〈X0, f0, X1, f1, . . . , Xn−1, fn−1, Fn, Fn+1, . . .〉

where 〈 ~X, 〈dom(Fi) : i ≥ n〉〉 is a Gitik-Sharon condition. Furthermore, each
fi ∈ Coll(κ+ω+2

Xi
, < κXi+1

) for i < n − 1 and fn−1 ∈ Coll(κ+ω+2
Xn−1

, < κ). Moreover,

Fi(X) ∈ Coll(κ+ω+2
X , < κ).

Exercise: Try to show that this poset preserves cardinals.

We can force this poset to have chain condition by taking [Fi] in some generic
filter for the ith poset of classes. As with the “improvement” of Magidor’s poset,
we need a lemma to construct these generics.

Claim: Starting in V , with GCH and κ supercompact, if we iterate Add(α, α+ω+2)
for α ≤ κ (with Easton support), then we can lift an embedding j : V −→ M
witnessing κ+ω+1-supercompactness then for a generic A for the iteration, we can
put, in V [A], j : V [A] −→M [A∗] so that (∀α < j(κ)) (∃f : κ −→ κ) with j(f)(κ) =

41For adding collapses.
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α. In particular this implies (for the factor maps kn below) crit(kn) ≥ j(κ).

Mn

V [A]

M [A∗]

kn

j

jn

Over M [A∗] we can build a generic H for CollM [A∗](κ+ω+2, < j(κ)) (because the
ultrapower is sufficiently closed, so is that forcing, i.e. that this poset is κ+ω+2-
closed in V [A∗]). The high critical point of kn means that H “pulls back” to Hn,
a generic for the version of the above collapse in Mn. Taking [Fi] ∈ Hi gives the
Gitik-Sharon with collapses κ+ω+1-c.c. (As now conditions with the same stem are
compatible.)

(Note, for each of the following, we are working in V [A] after we’ve done the
iteration.)

Try 1: Gitik-Sharon for ℵω. Use Coll(κ+n+2
Xn

, < κXn+1
). These collapses have too

much information, and will collapse κ+ω+1.

Try 2: Use CollV (κ+n+2
Xn

, < κXn+1
). Has the Prikry property. What are the obsta-

cles? These forcings are no longer closed, but are still distributive.42 This forcing
is still bad, because of the guiding principle at κ+ω+2 implies it will collapse κ+ω+2.

Exercise: Figure out how to do the Prikry property argument using distributivity,
rather than closure.

Try 3: Use CollV (κ+n+1
Xn

, κ+ω+1)× CollV (κ+ω+2
Xn

, < κXn+1).

Theorem 24.1. (Spencer, Dima) Try 3 works to give ¬SCH at ℵω.

25. March 9

Start with V where κ is supercompact and GCH holds. Fix j : V −→M witness-
ing κ+ω+1-supercompactness. Iterate Add(α, α+ω+2) for α ≤ κ. Let A be generic
for the iteration. In V [A], there is a generic A∗ over M for j(iteration) such that
we get j : V [A] −→ M [A∗] which witnesses κ+ω+1-supercompactness of κ in V [A]
and ∀α < j(κ) ∃f : κ −→ κ s.t. j(f)(κ) = α.

Remark: (1) We did a similar argument when we revised Magidor’s poset to be

κ+-c.c. (2) In this setup, we can build generics for CollM [A∗](κ+ω+2, < j(κ)). This
is what you need to get Gitik-Sharon down to ℵω2 with a κ+ω+1-c.c. poset. This
κ+ω+1-c.c. is key in preservation of the stationary set of bad points.

42The proof of this involves breaking up the iteration in just the right way in order to apply
Easton’s Lemma.
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To get Gitik-Sharon down to ℵω, we use a product of collapses CollV (κ+n+2
Xn

, κ+ω+1
Xn

)×
CollV (κ+ω+2

Xn
, < κXn+1) between successive Prikry points. (It (hopefully) is clear

what the definition of the forcing should be.) Define a poset P using these collapses
and measures derived from j. (Not using “guiding generics” like in Remark 2.)

In P we have functions Fn : Pκ(κ+n) −→ Collapses, where

∀X,F (X) ∈ CollV (κ+n+2
X , κ+ω+1

X )× CollV (κ+ω+2
X , < κ).

The classes [Fn]Un (where Un is measure on Pκ+n

κ ) are in

C0
n × C1

n := CollWn(κ+n+2, κ+ω+1)× CollWn(κ+ω+2, < j(κ))

(where this poset is in Mn
∼= Ult(V [A], Un) and Wn is the V -like inner model of

Mn.)43 The fact about functions from κ to κ and j (above) imply that kn : Mn −→
M [A∗] has a critical point ≥ j(κ). Now kn(C0

n × C1
n) = CollM (κ+n+2, κ+ω+1) ×

CollM (κ+ω+2, < j(κ)) (in M [A∗]).

Note: crit(kn) ≥ j(κ) implies that kn(C0
n) = k′′n(C0

n) = C0
n.

Define D =
∏
n<ω C0

n × C1
n/fin.

Claim: P projects onto D.

Proof. The map

〈X0, f0, . . . , Xn−1, fn−1, Fn, Fn+1, . . .〉 7→ 〈∅,∅, . . . ,∅, [Fn], [Fn+1], . . .〉

is a projection. �

Claim 1: D preserves cardinals over V [A].

Claim 2: In V [D], P/D has κ+ω+1-c.c.

Claim 3: Over V, D0 :=
∏
n<ω C0

n/fin adds a �∗κ+ω -sequence.

Corollary: D0 destroys the stationarity of the set of bad points of any scale in V [A].

26. March 11

Recall we had two models V, V [A] and j : V [A] −→ M [A∗] witnessing κ+ω+1-
supercompactness. In V [A], 2κ = κ+ω+2. We defined a version of Gitik-Sharon
where conditions look like

〈X0, f0, . . . , Xn−1, fn−1, Fn, Fn+1, . . .〉.

Each fi ∈ CollV (κi+2
Xi

, < κ+ω+1
Xi

) × CollV (κ+ω+2
Xi

, < κXi+1
). Each Fi is defined ap-

propriately. [Fi] ∈ C0
i × C1

i = CollWi(κ+i+2, κ+ω+1) × CollWi(κ+ω+2, < ji(κ)) in
Mi
∼= Ult(V [A], Ui).

43Have Ū in V on Pκ(κ+ω+1) and extends to U in V [A]. Can lift both. On the other hand,
can project Ū to Ūn on Pκ(κ+n) and similarly for U projecting to Un. Now Ult(V, Ūn) embeds

into Ult(V [A], Un); on the other hand, M = Ult(V, Ū) ⊆ Ult(V [A], U) = M [A∗].
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Properties of j :

M [A∗]

V [A]

Mi

j

ji

ki

crit(ki) ≥ j(κ), so ki(C0
i ) = k′′i (C0

i ) = C0
i , i.e. ki � C0

i is the identity. ki(C0
i ) =

CollM (κ+i+2, κ+ω+1) = CollV (κ+i+2, κ+ω+1) (since we have a ultrapower by a
highly closed measure).

We have the following claims from last time.

Claim -1: P satisfies the strong Prikry Lemma.

Claim 0: P induces a generic for D :=
∏

C0
n × C1

n/fin.

Claim 1: D preserves cardinals.

Proof. Exercise. The fact the poset is defined mod finite will allow a strategic
closure argument. �

Claim 2: If H is D-generic, then in V [A][H], P/H has κ+ω+1-c.c.

Proof. First, the strong Prikry Lemma implies that P preserves κ+ω+1 =: µ.44 Fix
a P-generic G which projects to H. Also fix 〈pi : i < µ〉 in P/H. We can think of G

as 〈 ~X, ~C〉 where ~X is a Prikry sequence and Cn is a generic for the nth collapse.45

∀p ∈ P/H, {q : ∀ large enough n, [F qn ] ≤ [F pn ]} is dense in P/H. This means that
∀i < µ, ∃ki < ω, ∀n ≥ ki, Xn ∈ Apin and F pin (Xn) ∈ Cn (in V [G]).

Fix the choice of ki to k on a set of size µ in V [A][G]. Extend each pi to qi to have
length k by only picking new Prikry points. Further fix the stem of qi on a large
set. Choose qi, qj forced to be in the good set of size µ. We claim that qi, qj are
compatible. Let s = stem(qi) = stem(qj). There is N so that ∀n ≥ N, [F qin ] ‖ [F

qj
n ]

since qi, qj are in H. For n ∈ [l(s), N), we use (Xn, F
qi
n (Xn) ∪ F qjn (Xn)) for the

nth-piece. Note Xn ∈ Aqin ∩A
qj
n , and the union on the right is in Cn (as qi, pi give

same information here). The witnessing condition is 〈s_〈(Xn, F
qi
n (Xn)∪F qjn (Xn) :

n ∈ [l(s), N)〉, 〈[F qin ] ∧ [F
qj
n ] : n ≥ N〉〉. �

Lemma:46 P is κ-c.c. implies ∀〈pα : α < κ〉 (∃α < κ), pα 
 “
{
β < κ : pβ ∈ Ġ

}
is

unbounded”.

Claim 3: D0 :=
∏
n C0

n/fin =
∏
n CollV (κ+i+2, κ+ω+1)/fin adds a �∗κ+ω -sequence.

44We’ve done this type of argument before, see for example the long extenders poset.
45We’re using a characterization of genericity somewhere in here.
46Not relevant here, but its proof is similar to the previous claim and it is “Something all good

people should know.” -S.
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27. March 13

Recall we had V ⊆ V [A]. In V [A], we have P ∈ V [A], a version of Gitik-
Sharon for ℵω. We saw that P induces a generic for a poset D0 ∈ V. We had
D0 =

∏
n<ω CollV (κ+n+2, κ+ω+1)/fin.

Claim: Forcing with D0 over V adds a �∗κ+ω -sequence.

Note that in V, κ+ω is strong limit.

Some extra from last time: If 2ω > ω1 and we force with Add(ω1, 1), then 2ω is
collapsed. If 2κ > κ+ω+1 and we force with

∏
n<ω Coll(κ+n+2, κ+ω+1)/fin, then 2κ

is collapsed. Note this gives some idea why we need the collapses to be from some
inner model.

Proof. (of claim) Let Ċn be a CollV (κ+n+2, κ+ω+1) be a name for a club in κ+ω+1

of ordertype κ+n+2. First notice that, if we set

Ẋ :=
{
γ < κ+ω+1 : ∃d ∈ GD0

for all large n, d(n) 
 “Ċn ∩ γ club in γ”
}

then

D0

“Ẋ is > ω club”.

For > ω-closed, fix increasing 〈γi : i < µ〉 with µ = cf(µ) > ω. Notice that

µ = cf(µ) < κ+n for some n. Fix witnessing 〈di : i < µ〉 s.t. di 
 γi ∈ Ẋ. Using the
fact below, GD0

is κ+-directed closed, so can get d ∈ GD0
which is a lower bound

for all of the di. It is not hard to see that d witnesses supi γi := γ ∈ Ẋ. Unbounded
is similar, using the fact that for all γ, the set{

d : for some γ′ > γ, d 
 γ̇′ ∈ Ẋ
}

is dense.
Now we want to get the �∗κ+ω -sequence. Work in the extension V [GD0

]. Let

dγ ∈ GD0 witness that γ ∈ Ẋ if possible. Also let Cγn be club in γ so that dγ(n) 

Ċn ∩ γ = Cγn . This works for all large enough n. Note that if γ < γ′ from X, then

for all large n, Cγ
′

n = Cγn ∩ γ′. Define for γ ∈ Ẋ,

Cγ =

C ⊆ γ : C club C ⊆
⋂
n≥k

Cγn for some k

 .

Also, if γ /∈ Ẋ, then cf(γ) = ω, so we just set Cγ = {some cofinal ω-sequence} . Let

γ ∈ limC for C ∈ C. For all large n, C ∩ γ′ ⊆ Cγn ∩ γ′ = Cγ
′

n . �

Fact: If a poset Q is κ + 1-strategically closed and H is Q-generic, then H is κ+-
directed closed.

Parting Thoughts

We’ll end with some general talk about the form of diagonal Prikry forcing.
Conditions are usually of the form 〈pn : n < ω〉. We also have some (length)

function l : P −→ ω. We will typically say p ≤∗ q if p ≤ q and l(p) = l(q).
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Now let
P0 = {p : l(p) = 0} and D∗ = (P0,≤∗).

Let further
Pn =

{
p � [n, ω) : p ∈ P0

}
and D :=

⋃
n<ω

Pn,

where p � [n, ω) ≤ q � [m,ω) if ∃k ≥ max {m,n} so that p � [k, ω) ≤ q � [k, ω).

Observation 1: If D∗ collapses “the successor of the singular,” over a model where
its predecessor (the singular) is strong limit, then D adds weak square.47

Observation 2: If D∗ preserves the successor of the singular and some supercom-
pactness and P/D has chain condition, then P forces the failure of weak square.48

47This also applies to the extender-based forcing from earlier.
48Gitik-Sharon falls in this case.


