EXTRA SET THEORY PROBLEMS

Here are some extra problems. Don't let them distract you from the real homework. I will occasionally add to this file as I think of more problems that I wanted to add.

Problem 1. Assume that $\kappa^{<\kappa} = \kappa$. Construct a linear order L of size κ such that for all $A, B \subseteq L$ with $|A|, |B| < \kappa$ and for all $a \in A$ and $b \in B$ a < b, there is $c \in L$ such that a < c < b for all $a \in A$ and $b \in B$.

Problem 2. Assume $\kappa^{<\kappa} = \kappa$. Use the linear order L from the previous problem to construct a κ^+ -tree T with no cofinal branch. The tree you construct should be special in the sense that there is a function $f: T \to \kappa$ such that s < t implies $f(s) \neq f(t)$.

Problem 3. Show that $MA(\aleph_1)$ implies all ccc posets are ω_1 -Knaster through the following sequence of claims about a ccc poset \mathbb{P} :

- (1) Let $\langle p_{\alpha} \mid \alpha < \omega_1 \rangle$ be a sequence of elements of \mathbb{P} . Show that there is an $\alpha < \omega_1$ such that p_{α} is compatible with uncountably many p_{β} . To do this suppose otherwise and let F be a function such that $F(\alpha)$ is the least ordinal γ such that for all β if p_{α}, p_{β} are compatible, then $\beta < \gamma$. Show that the collection of $\gamma < \omega_1$ such that $\{F(\alpha) \mid \alpha < \gamma\} \subseteq \gamma$ is a club $C \subseteq \omega_1$. Show that $\{p_{\alpha} \mid \alpha \in C\}$ is an antichain, a contradiction.
- (2) Fix an α^* as in the first part. Next show that the set $D_{\alpha} = \{p \mid p \leq p_{\gamma} \text{ for some } \gamma > \alpha\}$ is dense in the ccc poset $\mathbb{P} \upharpoonright p_{\alpha^*} = \{p \in \mathbb{P} \mid p \leq p_{\alpha^*}\}.$
- (3) Apply $MA(\aleph_1)$.

Problem 4. Assume CH. Show that $\mathbb{R} \times \mathbb{R}$ can be written as the union of countably many functions some of which have domain the x-axis and some of which have domain the y-axis.