FORCING EXERCISES DAY 13

Definition 1. A map $\pi : \mathbb{P} \to \mathbb{Q}$ is a projection if

- (1) $\pi(\mathbb{1}_{\mathbb{P}}) = \mathbb{1}_{\mathbb{Q}},$
- (2) for all $p_1, p_2 \in \mathbb{P}$, $p_1 \leq p_2$ implies that $\pi(p_1) \leq \pi(p_2)$ and
- (3) for all $p \in \mathbb{P}$ and all $q \leq \pi(p)$, there is $p' \in \mathbb{P}$ such that $p' \leq p$ and $\pi(p') \leq q$.

Let $\pi : \mathbb{P} \to \mathbb{Q}$ be a projection.

Problem 2. If G is \mathbb{P} -generic, then the upwards closure of $\{\pi(p) \mid p \in G\}$ is \mathbb{Q} -generic.

Definition 3. Let κ be a regular cardinal. \mathbb{P} has the κ chain condition if every antichain of \mathbb{P} has size less than κ .

Problem 4. If \mathbb{P} is κ -cc, then \mathbb{Q} is κ -cc.

Problem 5. Let H be \mathbb{Q} -generic. In M[H] define a poset \mathbb{P}/H whose underlying set is $\{p \in \mathbb{P} \mid \pi(p) \in H\}$ and is ordered as a suborder of \mathbb{P} . (Note that M[H]is a perfectly good transitive model of ZFC, so we can force over it.) Let G be \mathbb{P}/H -generic over M[H]. Show that G is a \mathbb{P} -generic filter over M.

Problem 6. Let \mathbb{C} be Cohen forcing that is functions whose domain is a natural number and range is contained in ω . Define $\pi : \mathbb{C} \to \mathbb{C}$ by $\pi(p)(n) = p(2n)$ whenever 2n is in the domain of p. Show that π is a projection. (Notice that this solves Problem 3 part 2 from Day 11.)

Problem 7. Let G be \mathbb{C} -generic. In M[G] define \mathbb{C}/G as above using π as in the previous problem. What is this poset? Can you give a concrete characterization?

Problem 8. An automorphism $i : \mathbb{P} \to \mathbb{P}$ is a bijection such that $p \leq q$ if and only if $i(p) \leq i(q)$. A poset is almost homogeneous if for any $p, q \in \mathbb{P}$ there is an automorphism $i : \mathbb{P} \to \mathbb{P}$ such that i(p) and q are compatible. Do the following:

- (1) Show that if I is an infinite set and J is any set then $Fn(I, J) = \{p \mid dom(p) \subseteq I \text{ is finite and } ran(p) \subseteq J\}$ ordered by reverse inclusion is almost homogeneous. (Note that the forcing to make $2^{\omega} = \omega_2$ is $Fn(\omega_2, 2)$.)
- (2) Given an automorphism $i : \mathbb{P} \to \mathbb{P}$ with $i \in M$ and a \mathbb{P} -name τ we define recursively the \mathbb{P} -name $i(\tau)$ by letting $i(\tau)$ be all the pairs $\langle i(\sigma), i(p) \rangle$ where $\langle \sigma, p \rangle \in \tau$. Show that for any $x \in M$, $i(\check{x}) = \check{x}$.
- (3) Let $\tau_1, \ldots, \tau_n \in M^{\mathbb{P}}$. Show that $p \Vdash \phi(\tau_1, \ldots, \tau_n)$ if and only if $i(p) \Vdash \phi(i(\tau_1), \ldots, i(\tau_n))$.
- (4) Suppose that \mathbb{P} is almost homogeneous, and let G be \mathbb{P} -generic. Let $x_1, \ldots, x_n \in M$. Show that if $M[G] \vDash \phi(x_1, \ldots, x_n)$ then in fact $1 \vDash \phi(\check{x}_1, \ldots, \check{x}_n)$.
- (5) Conclude that if P is almost homogeneous, then for any P-generic filters G and H, M[G] and M[H] are elementarily equivalent (with respect to first order logic).

Problem 9. Show that if \mathbb{P} is κ^+ -cc where κ is regular, then forcing with \mathbb{P} adds a subset to κ^+ . Hint: Use a previous exercise.

Problem 10. Remove the assumption that κ is regular in the previous problem.

Problem 11. Let \mathbb{P} be ω_1 -Knaster. Show that if T is a tree of height ω_1 with no cofinal branch, then for all M-generic G, T has no cofinal branch in M[G].

Problem 12 (*). Let T be a tree of height ω_1 and \mathbb{P} be a poset such that $\mathbb{P} \times \mathbb{P}$ is ccc. Let G be M-generic over \mathbb{P} . Show that if $b \in M[G]$ is a cofinal branch through T, then $b \in M$.