FORCING EXERCISES DAY 12

Problem 1. Let $\mathbb{P} \in M$ be a separative partial order, and Γ the canonical name for the generic filter. Show that $q \Vdash \check{p} \in \Gamma$ if and only if $q \leq p$.

Problem 2. Let \mathbb{P} be a poset, and let \mathbb{Q} be a dense set of \mathbb{P} , viewed as a subposet. Do the following.

- (1) If G is \mathbb{P} -generic, then if we set $H = G \cap Q$, we have that H is \mathbb{Q} -generic. Further, $G = \{p \in \mathbb{P} : (\exists q \in H)q \leq p\}.$
- (2) If H is Q-generic, then if we set $G = \{p \in \mathbb{P} : (\exists q \in H)q \leq p\}$ then G is P-generic. Further, $H = G \cap Q$.
- (3) If G and H are taken as in either of the two above, then M[G] = M[H].
- (4) Any \mathbb{Q} -name is a \mathbb{P} -name, and if $\tau_1, \ldots, \tau_n \in M^{\mathbb{Q}}$ then $\Vdash_{\mathbb{P}} \phi(\tau_1, \ldots, \tau_n)$ if and only if $\Vdash_{\mathbb{Q}} \phi(\tau_1, \ldots, \tau_n)$.
- (5) For any $\tau \in M^{\mathbb{P}}$ there is a $\sigma \in M^{\mathbb{P}}$ such that $\Vdash_{\mathbb{P}} \tau = \sigma$.

Problem 3. Two forcing notions \mathbb{P} and \mathbb{Q} are forcing equivalent if there are $\tau \in \mathbb{P}$ and $\sigma \in \mathbb{Q}$ such that

- (a) $\Vdash_{\mathbb{P}} \tau$ is a \mathbb{Q} -generic filter.
- (b) $\Vdash_{\mathbb{O}} \sigma$ is a \mathbb{P} -generic filter.
- (c) If G is \mathbb{P} -generic then $G = \sigma[\tau[G]]$.
- (d) If H is \mathbb{Q} -generic then $H = \tau[\sigma[H]]$.

Do the following:

- (1) Show that if \mathbb{Q} is a dense subset of \mathbb{P} , then the two are forcing equivalent.
- (2) Show that forcing equivalence is an equivalence relation.

Problem 4. Revisit Problems 3 and 4 from yesterday.

Problem 5. Let \mathbb{P} be countably closed forcing and let T be a tree of height ω_1 with no cofinal branch. Show that for all M-generic G, T has no cofinal branch in M[G].

Problem 6. Let \mathbb{P} be countably closed forcing and $2^{\omega} = \omega_2$. Suppose that T is an ω_2 -tree. Show that if $b \in M[G]$ is a cofinal branch through T, then $b \in M$.