FORCING EXERCISES DAY 10

Problem 1. Revisit problem 6 from Day 9 and write down a clean copy of the solution (as though you were turning it in).

Problem 2. Read a proof of the Lowenheim-Skolem theorem. Be ready to present the proof in your problem session.

Problem 3. Suppose $p \Vdash \phi$ and $ZFC \vdash (\phi \rightarrow \psi)$. Then $p \Vdash \psi$. (You can assume M[G] is a model of ZFC).

Problem 4. Do the following:

- (1) Show that for any formulas ϕ and ψ and $\tau_1, \ldots, \tau_n \in M^{\mathbb{P}}$ and $\sigma_1, \ldots, \sigma_m \in M^{\mathbb{P}}$ we have that $p \Vdash \phi(\tau_1, \ldots, \tau_n) \land \psi(\sigma_1, \ldots, \sigma_m)$ if and only if both $p \Vdash \phi(\tau_1, \ldots, \tau_n)$ and $p \Vdash \psi(\tau_1, \ldots, \tau_m)$.
- (2) Show that for any formula ϕ and $\tau_1, \ldots, \tau_n \in M^{\mathbb{P}}$, $p \Vdash \neg \phi(\tau_1, \ldots, \tau_n)$ if and only if there is no $q \leq p$ such that $q \Vdash \phi$.

Problem 5. Read the definition of ultraproducts and the proof of Los' Theorem starting on page 158 of Jech. If you don't have a copy, then search google for a reputable source.

Problem 6 (The Compactness Theorem). Suppose that T is a theory and every finite subset of T has a model. Let $I = \{T_0 \mid T_0 \subseteq T \text{ is finite}\}$. Show the following:

- (1) Define $A_{\phi} \subseteq I$ for $\phi \in T$ by $A_{\phi} = \{T_0 \in I \mid \phi \in T_0\}$. Show that $\{A_{\phi} \mid \phi \in T\}$ has the finite intersection property.
- (2) Define an ultrafilter on I. For each $i \in I$ let M_i be a model of i. Recall i is a finite subset of T. Define the ultraproduct Ult of $\langle M_i | i \in I \rangle$ by your ultrafilter. Show that Ult $\models T$ by Los' Theorem.